版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
專題01全等模型倍長中線與截長補短全等三角形在中考數(shù)學幾何模塊中占據(jù)著重要地位,也是學生必須掌握的一塊內(nèi)容,本專題就全等三角形中的重要模型(倍長中線模型、截長補短模型)進行梳理及對應試題分析,方便掌握。模型1.倍長中線模型【模型解讀】中線是三角形中的重要線段之一,在利用中線解決幾何問題時,常常采用“倍長中線法”添加輔助線.所謂倍長中線法,就是將三角形的中線延長一倍,以便構造出全等三角形,從而運用全等三角形的有關知識來解決問題的方法.(注:一般都是原題已經(jīng)有中線時用,不太會有自己畫中線的時候)?!境R娔P图白C法】1、基本型:如圖1,在三角形ABC中,AD為BC邊上的中線.證明思路:延長AD至點E,使得AD=DE.若連結BE,則;若連結EC,則;2、中點型:如圖2,為的中點.證明思路:若延長至點,使得,連結,則;若延長至點,使得,連結,則.3、中點+平行線型:如圖3,,點為線段的中點.證明思路:延長交于點(或交延長線于點),則.例1.(2023·成都市·八年級課時練習)【閱讀理解】課外興趣小組活動時,老師提出了如下問題:如圖,△ABC中,若AB=8,AC=6,求BC邊上的中線AD的取值范圍.小明在組內(nèi)經(jīng)過合作交流,得到了如下的解決方法:如圖,延長AD到點E,使DE=AD,連結BE.請根據(jù)小明的方法思考:(1)由已知和作圖能得到的理由是(
).A.SSS
B.SAS
C.AAS
D.ASA(2)AD的取值范圍是(
).A.
B.
C.
D.(3)【感悟】解題時,條件中若出現(xiàn)“中點”、“中線”字樣,可以考慮延長中線構造全等三角形,把分散的已知條件和所求證的結論轉化到同一個三角形中.【問題解決】如圖,AD是△ABC的中線,BE交AC于點E,交AD于F,且AE=EF.求證:AC=BF.例2.(2022·河南南陽·中考模擬)【教材呈現(xiàn)】如圖是華師版八年級上冊數(shù)學教材第69頁的部分內(nèi)容:如圖,在中,D是邊BC的中點,過點C畫直線CE,使,交AD的延長線于點E,求證:證明∵(已知)∴,(兩直線平行,內(nèi)錯角相等).在與中,∵,(已證),(已知),∴,∴(全等三角形的對應邊相等).(1)【方法應用】如圖①,在中,,,則BC邊上的中線AD長度的取值范圍是______.(2)【猜想證明】如圖②,在四邊形ABCD中,,點E是BC的中點,若AE是的平分線,試猜想線段AB、AD、DC之間的數(shù)量關系,并證明你的猜想;(3)【拓展延伸】如圖③,已知,點E是BC的中點,點D在線段AE上,,若,,求出線段DF的長.例3.(2022·貴州畢節(jié)·二模)課外興趣小組活動時,老師提出了如下問題:(1)如圖1,△ABC中,若AB=5,AC=3,求BC邊上的中線AD的取值范圍.小明在組內(nèi)經(jīng)過合作交流,得到了如下的解決方法:延長AD到點E,使DE=AD,請根據(jù)小明的方法思考幫小明完成解答過程.(2)如圖2,AD是△ABC的中線,BE交AC干E,交AD于F,且AE=EF.請判昕AC與BF的數(shù)量關系,并說明理由.例4.(2022·山東·安丘市一模)閱讀材料:如圖1,在中,D,E分別是邊AB,AC的中點,小亮在證明“三角形的中位線平行于第三邊,且等于第三邊的一半”時,通過延長DE到點F,使,連接CF,證明,再證四邊形DBCF是平行四邊形即得證.類比遷移:(1)如圖2,AD是的中線,E是AC上的一點,BE交AD于點F,且,求證:.小亮發(fā)現(xiàn)可以類比材料中的思路進行證明.證明:如圖2,延長AD至點M,使,連接MC,……請根據(jù)小亮的思路完成證明過程.方法運用:(2)如圖3,在等邊中,D是射線BC上一動點(點D在點C的右側),連接AD.把線段CD繞點D逆時針旋轉120°得到線段DE,F(xiàn)是線段BE的中點,連接DF、CF.請你判斷線段DF與AD的數(shù)量關系,并給出證明.模型2.截長補短模型【模型解讀】截長補短的方法適用于求證線段的和差倍分關系。該類題目中常出現(xiàn)等腰三角形、角平分線等關鍵詞句,可以采用截長補短法構造全等三角形來完成證明過程,截長補短法(往往需證2次全等)。截長:指在長線段中截取一段等于已知線段;補短:指將短線段延長,延長部分等于已知線段?!境R娔P图白C法】(1)截長:在較長線段上截取一段等于某一短線段,再證剩下的那一段等于另一短線段。例:如圖,求證BE+DC=AD方法:=1\*GB3①在AD上取一點F,使得AF=BE,證DF=DC;=2\*GB3②在AD上取一點F,使DF=DC,證AF=BE(2)補短:將短線段延長,證與長線段相等例:如圖,求證BE+DC=AD方法:=1\*GB3①延長DC至點M處,使CM=BE,證DM=AD;=2\*GB3②延長DC至點M處,使DM=AD,證CM=BE例1.(2022秋·山東八年級課時練習)如圖所示,平分平分;(1)求與的數(shù)量關系,并說明你的理由.(2)若把條件去掉,則(1)中與的數(shù)量關系還成立嗎?并說明你的理由.例2.(2022秋·重慶市·八年級專題練習)如圖,在中,,平分.(1)如圖1,若,求證:;(2)如圖2,若,求的度數(shù);(3)如圖3,若,求證:.例3.(2023·廣西·九年級專題練習)在四邊形ABDE中,C是BD邊的中點.(1)如圖(1),若AC平分∠BAE,∠ACE=90°,則線段AE、AB、DE的長度滿足的數(shù)量關系為;(直接寫出答案);(2)如圖(2),AC平分∠BAE,EC平分∠AED,若∠ACE=120°,則線段AB、BD、DE、AE的長度滿足怎樣的數(shù)量關系?寫出結論并證明.例4.(2022秋·綿陽市·八年級期末)(1)閱讀理解:問題:如圖1,在四邊形中,對角線平分,.求證:.思考:“角平分線+對角互補”可以通過“截長、補短”等構造全等去解決問題.方法1:在上截取,連接,得到全等三角形,進而解決問題;方法2:延長到點,使得,連接,得到全等三角形,進而解決問題.結合圖1,在方法1和方法2中任選一種,添加輔助線并完成證明.(2)問題解決:如圖2,在(1)的條件下,連接,當時,探究線段,,之間的數(shù)量關系,并說明理由;(3)問題拓展:如圖3,在四邊形中,,,過點D作,垂足為點E,請直接寫出線段、、之間的數(shù)量關系.課后專項訓練:1.(2022·四川成都·八年級期中)如圖中,點為的中點,,,,則的面積是______.2.(2023·江蘇·八年級假期作業(yè))如圖,與有一條公共邊AC,且AB=AD,∠ACB=∠ACD=x,則∠BAD=________.(用含有x的代數(shù)式表示)3.(2022·北京·中考真題)在中,,D為內(nèi)一點,連接,,延長到點,使得(1)如圖1,延長到點,使得,連接,,若,求證:;(2)連接,交的延長線于點,連接,依題意補全圖2,若,用等式表示線段與的數(shù)量關系,并證明.4.(2022·江蘇鎮(zhèn)江·八年級階段練習)我們規(guī)定:有兩組邊相等,且它們所夾的角互補的兩個三角形叫兄弟三角形.如圖,OA=OB,OC=OD,∠AOB=∠COD=90°,回答下列問題:(1)求證:△OAC和△OBD是兄弟三角形.(2)“取BD的中點P,連接OP,試說明AC=2OP.”聰明的小王同學根據(jù)所要求的結論,想起了老師上課講的“中線倍長”的輔助線構造方法,解決了這個問題,按照這個思路回答下列問題.①請在圖中通過作輔助線構造△BPE≌△DPO,并證明BE=OD;②求證:AC=2OP.5.(2022·全國·八年級專題練習)如圖1,在中,是邊的中線,交延長線于點,.(1)求證;(2)如圖2,平分交于點,交于點,若,,求的值.6.(2022·浙江臺州·八年級階段練習)八年級一班數(shù)學興趣小組在一次活動中進行了探究試驗活動,請你和他們一起活動吧.(1)【閱讀理解】如圖1,在中,若,.求邊上的中線的取值范圍.小聰同學是這樣思考的:延長至E,使,連接.利用全等將邊轉化到,在中利用三角形三邊關系即可求出中線的取值范圍.在這個過程中小聰同學證三角形全等用到的判定方法是______;中線的取值范圍是______.(2)【理解與應用】如圖2,在中,點D是的中點,點M在邊上,點N在邊上,若.求證:.(3)【問題解決】如圖3,在中,點D是的中點,,,其中,連接,探索與的數(shù)量關系,并說明理由.7.(2022·山東臨沂·八年級期末)(1)問題解決:如圖,在四邊形ABCD中,∠BAD=α,∠BCD=180°﹣α,BD平分∠ABC.①如圖1,若α=90°,根據(jù)教材中一個重要性質直接可得AD=CD,這個性質是;②在圖2中,求證:AD=CD;(2)拓展探究:根據(jù)(1)的解題經(jīng)驗,請解決如下問題:如圖3,在等腰△ABC中,∠BAC=100°,BD平分∠ABC,求證BD+AD=BC.8.(2022·北京·九年級專題練習)如圖,在三角形中,,,是邊的高線,將線段繞點A逆時針旋轉得到線段,連接交于點F.(1)依題意補全圖形,寫出____________°(2)求和的度數(shù);(3)用等式表示線段之間的數(shù)量關系,并證明.9.(2022·吉林·公主嶺市范家屯鎮(zhèn)第二中學校九年級期末)我們定義:如圖1,在中,把繞點A順時針旋轉得到,把繞點A逆時針旋轉得到,連接.當時,我們稱是的“旋補三角形”,邊上的中線叫做的“旋補中線”,點A叫做“旋補中心”.特例感知:(1)在圖2,圖3中,是的“旋補三角形”,是的“旋補中線”.①如圖2,當為等邊三角形時,與的數(shù)量關系為________;②如圖3,當時,則長為___________.猜想論證:(2)在圖1中,當為任意三角形時,猜想與的數(shù)量關系,并給予證明.10.(2022·湖北孝感·八年級期中)(1)感知:如圖1,AD平分∠BAC,∠B+∠C=180°,∠B=90°,易知DB,DC數(shù)量關系為:.(2)探究:如圖2,AD平分∠BAC,∠ABD+∠ACD=180°,∠ABD<90°,(1)中的結論是否成立?請作出判斷并給予證明.(3)應用:如圖3,在四邊形ABCD中,DB=DC,∠ABD+∠ACD=180°,∠ABD<90°,DE⊥AB于點E,試判斷AB,AC,BE的數(shù)量關系,并說明理由.11.(2022·遼寧大連·八年級期末)已知點D是△ABC外一點,連接AD,BD,CD,.(1)【特例體驗】如圖1,AB=BC,α=60°,則∠ADB的度數(shù)為;(2)【類比探究】如圖2,AB=BC,求證:∠ADB=∠BDC;(3)【拓展遷移】如圖3,α=60°,∠ACB+∠BCD=180°,CE⊥BD于點E,AC=kDE,直接寫出的值(用k的代數(shù)式表示).12.(2022秋·重慶八年級課時練習)在中,BE,CD為的角平分線,BE,CD交于點F.(1)求證:;(2)已知.①如圖1,若,,求CE的長;②如圖2,若,求的大小.13.(2022秋·遼寧鞍山·八年級??计谥校┤鐖D,在△ABC中,AB=BC,∠ABC=60°,線段AC與AD關于直線AP對稱,E是線段BD與直線AP的交點.(1)若∠DAE=15°,求證:△ABD是等腰直角三角形;(2)連CE,求證:BE=AE+CE.14.(2022秋·陜西西安·八年級統(tǒng)考期中)如圖,在中,是上一點,連接,已知,,是的中線.求證:.(提示:延長至,使,連接)15.(2023春·成都市·七年級專題練習)(1)如圖1,在A
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- DBJ51-T 190-2022 四川省裝配式支吊架抗震技術標準
- 2024年大學創(chuàng)新創(chuàng)業(yè)工作總結
- 《我的時間管理分享》課件
- 《村鎮(zhèn)銀行介紹》課件
- 新媒體春分營銷策略
- 酒店前臺話務員工作總結
- 企業(yè)生涯規(guī)劃圖譜
- 2023-2024年項目部安全培訓考試題及答案往年題考
- 2023年-2024年項目部管理人員安全教育培訓試題及答案(各地真題)
- 化工生產(chǎn)實習報告合集十篇
- 【9道期末】安徽省宣城市2023-2024學年九年級上學期期末道德與法治試題(含解析)
- 《工程造價專業(yè)應用型本科畢業(yè)設計指導標準》
- 倉庫主管2025年終總結及2025工作計劃
- 2024年01月11396藥事管理與法規(guī)(本)期末試題答案
- 股權投資協(xié)議的風險控制
- 山西省晉中市2023-2024學年高一上學期期末考試 物理 含解析
- 裝卸工安全培訓課件
- 中成藥學完整版本
- 安全與急救學習通超星期末考試答案章節(jié)答案2024年
- 2024-2025學年度廣東省春季高考英語模擬試卷(解析版) - 副本
- 2024電力安全工器具及小型施工機具預防性試驗規(guī)程
評論
0/150
提交評論