黃岡市啟黃中學(xué)2025屆數(shù)學(xué)高三第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第1頁
黃岡市啟黃中學(xué)2025屆數(shù)學(xué)高三第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第2頁
黃岡市啟黃中學(xué)2025屆數(shù)學(xué)高三第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第3頁
黃岡市啟黃中學(xué)2025屆數(shù)學(xué)高三第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第4頁
黃岡市啟黃中學(xué)2025屆數(shù)學(xué)高三第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

黃岡市啟黃中學(xué)2025屆數(shù)學(xué)高三第一學(xué)期期末教學(xué)質(zhì)量檢測試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知集合,,則等于()A. B. C. D.2.函數(shù)的定義域?yàn)椋ǎ〢. B. C. D.3.若實(shí)數(shù)滿足的約束條件,則的取值范圍是()A. B. C. D.4.設(shè)為的兩個(gè)零點(diǎn),且的最小值為1,則()A. B. C. D.5.若為虛數(shù)單位,則復(fù)數(shù)的共軛復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.已知函數(shù),若,則等于()A.-3 B.-1 C.3 D.07.已知函數(shù),若恒成立,則滿足條件的的個(gè)數(shù)為()A.0 B.1 C.2 D.38.若不相等的非零實(shí)數(shù),,成等差數(shù)列,且,,成等比數(shù)列,則()A. B. C.2 D.9.已知復(fù)數(shù)滿足,且,則()A.3 B. C. D.10.若集合,,則A. B. C. D.11.函數(shù)的大致圖象為A. B.C. D.12.已知角的終邊與單位圓交于點(diǎn),則等于()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.(5分)在平面直角坐標(biāo)系中,過點(diǎn)作傾斜角為的直線,已知直線與圓相交于兩點(diǎn),則弦的長等于____________.14.角的頂點(diǎn)在坐標(biāo)原點(diǎn),始邊與軸的非負(fù)半軸重合,終邊經(jīng)過點(diǎn),則的值是.15.若直線與直線交于點(diǎn),則長度的最大值為____.16.已知正實(shí)數(shù)滿足,則的最小值為.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標(biāo)系xOy中,曲線l的參數(shù)方程為(為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸非負(fù)半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為4sin.(1)求曲線C的普通方程;(2)求曲線l和曲線C的公共點(diǎn)的極坐標(biāo).18.(12分)設(shè)前項(xiàng)積為的數(shù)列,(為常數(shù)),且是等差數(shù)列.(I)求的值及數(shù)列的通項(xiàng)公式;(Ⅱ)設(shè)是數(shù)列的前項(xiàng)和,且,求的最小值.19.(12分)已知三棱錐中,為等腰直角三角形,,設(shè)點(diǎn)為中點(diǎn),點(diǎn)為中點(diǎn),點(diǎn)為上一點(diǎn),且.(1)證明:平面;(2)若,求直線與平面所成角的正弦值.20.(12分)已知橢圓E:()的離心率為,且短軸的一個(gè)端點(diǎn)B與兩焦點(diǎn)A,C組成的三角形面積為.(Ⅰ)求橢圓E的方程;(Ⅱ)若點(diǎn)P為橢圓E上的一點(diǎn),過點(diǎn)P作橢圓E的切線交圓O:于不同的兩點(diǎn)M,N(其中M在N的右側(cè)),求四邊形面積的最大值.21.(12分)已知{an}是一個(gè)公差大于0的等差數(shù)列,且滿足a3a5=45,a2+a6=1.(I)求{an}的通項(xiàng)公式;(Ⅱ)若數(shù)列{bn}滿足:…,求{bn}的前n項(xiàng)和.22.(10分)已知直線的參數(shù)方程為(,為參數(shù)),曲線的極坐標(biāo)方程為.(1)將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程,并說明曲線的形狀;(2)若直線經(jīng)過點(diǎn),求直線被曲線截得的線段的長.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】

進(jìn)行交集的運(yùn)算即可.【詳解】,1,2,,,,1,.故選:.【點(diǎn)睛】本題主要考查了列舉法、描述法的定義,考查了交集的定義及運(yùn)算,考查了計(jì)算能力,屬于基礎(chǔ)題.2、C【解析】

函數(shù)的定義域應(yīng)滿足故選C.3、B【解析】

根據(jù)所給不等式組,畫出不等式表示的可行域,將目標(biāo)函數(shù)化為直線方程,平移后即可確定取值范圍.【詳解】實(shí)數(shù)滿足的約束條件,畫出可行域如下圖所示:將線性目標(biāo)函數(shù)化為,則將平移,平移后結(jié)合圖像可知,當(dāng)經(jīng)過原點(diǎn)時(shí)截距最小,;當(dāng)經(jīng)過時(shí),截距最大值,,所以線性目標(biāo)函數(shù)的取值范圍為,故選:B.【點(diǎn)睛】本題考查了線性規(guī)劃的簡單應(yīng)用,線性目標(biāo)函數(shù)取值范圍的求法,屬于基礎(chǔ)題.4、A【解析】

先化簡已知得,再根據(jù)題意得出f(x)的最小值正周期T為1×2,再求出ω的值.【詳解】由題得,設(shè)x1,x2為f(x)=2sin(ωx﹣)(ω>0)的兩個(gè)零點(diǎn),且的最小值為1,∴=1,解得T=2;∴=2,解得ω=π.故選A.【點(diǎn)睛】本題考查了三角恒等變換和三角函數(shù)的圖象與性質(zhì)的應(yīng)用問題,是基礎(chǔ)題.5、B【解析】

由共軛復(fù)數(shù)的定義得到,通過三角函數(shù)值的正負(fù),以及復(fù)數(shù)的幾何意義即得解【詳解】由題意得,因?yàn)?,,所以在?fù)平面內(nèi)對應(yīng)的點(diǎn)位于第二象限.故選:B【點(diǎn)睛】本題考查了共軛復(fù)數(shù)的概念及復(fù)數(shù)的幾何意義,考查了學(xué)生概念理解,數(shù)形結(jié)合,數(shù)學(xué)運(yùn)算的能力,屬于基礎(chǔ)題.6、D【解析】分析:因?yàn)轭}設(shè)中給出了的值,要求的值,故應(yīng)考慮兩者之間滿足的關(guān)系.詳解:由題設(shè)有,故有,所以,從而,故選D.點(diǎn)睛:本題考查函數(shù)的表示方法,解題時(shí)注意根據(jù)問題的條件和求解的結(jié)論之間的關(guān)系去尋找函數(shù)的解析式要滿足的關(guān)系.7、C【解析】

由不等式恒成立問題分類討論:①當(dāng),②當(dāng),③當(dāng),考查方程的解的個(gè)數(shù),綜合①②③得解.【詳解】①當(dāng)時(shí),,滿足題意,②當(dāng)時(shí),,,,,故不恒成立,③當(dāng)時(shí),設(shè),,令,得,,得,下面考查方程的解的個(gè)數(shù),設(shè)(a),則(a)由導(dǎo)數(shù)的應(yīng)用可得:(a)在為減函數(shù),在,為增函數(shù),則(a),即有一解,又,均為增函數(shù),所以存在1個(gè)使得成立,綜合①②③得:滿足條件的的個(gè)數(shù)是2個(gè),故選:.【點(diǎn)睛】本題考查了不等式恒成立問題及利用導(dǎo)數(shù)研究函數(shù)的解得個(gè)數(shù),重點(diǎn)考查了分類討論的數(shù)學(xué)思想方法,屬難度較大的題型.8、A【解析】

由題意,可得,,消去得,可得,繼而得到,代入即得解【詳解】由,,成等差數(shù)列,所以,又,,成等比數(shù)列,所以,消去得,所以,解得或,因?yàn)?,,是不相等的非零?shí)數(shù),所以,此時(shí),所以.故選:A【點(diǎn)睛】本題考查了等差等比數(shù)列的綜合應(yīng)用,考查了學(xué)生概念理解,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.9、C【解析】

設(shè),則,利用和求得,即可.【詳解】設(shè),則,因?yàn)?則,所以,又,即,所以,所以,故選:C【點(diǎn)睛】本題考查復(fù)數(shù)的乘法法則的應(yīng)用,考查共軛復(fù)數(shù)的應(yīng)用.10、C【解析】

解一元次二次不等式得或,利用集合的交集運(yùn)算求得.【詳解】因?yàn)榛?,,所以,故選C.【點(diǎn)睛】本題考查集合的交運(yùn)算,屬于容易題.11、A【解析】

因?yàn)?,所以函?shù)是偶函數(shù),排除B、D,又,排除C,故選A.12、B【解析】

先由三角函數(shù)的定義求出,再由二倍角公式可求.【詳解】解:角的終邊與單位圓交于點(diǎn),,故選:B【點(diǎn)睛】考查三角函數(shù)的定義和二倍角公式,是基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

方法一:依題意,知直線的方程為,代入圓的方程化簡得,解得或,從而得或,則.方法二:依題意,知直線的方程為,代入圓的方程化簡得,設(shè),則,故.方法三:將圓的方程配方得,其半徑,圓心到直線的距離,則.14、【解析】試題分析:由三角函數(shù)定義知,又由誘導(dǎo)公式知,所以答案應(yīng)填:.考點(diǎn):1、三角函數(shù)定義;2、誘導(dǎo)公式.15、【解析】

根據(jù)題意可知,直線與直線分別過定點(diǎn),且這兩條直線互相垂直,由此可知,其交點(diǎn)在以為直徑的圓上,結(jié)合圖形求出線段的最大值即可.【詳解】由題可知,直線可化為,所以其過定點(diǎn),直線可化為,所以其過定點(diǎn),且滿足,所以直線與直線互相垂直,其交點(diǎn)在以為直徑的圓上,作圖如下:結(jié)合圖形可知,線段的最大值為,因?yàn)闉榫€段的中點(diǎn),所以由中點(diǎn)坐標(biāo)公式可得,所以線段的最大值為.故答案為:【點(diǎn)睛】本題考查過交點(diǎn)的直線系方程、動點(diǎn)的軌跡問題及點(diǎn)與圓的位置關(guān)系;考查數(shù)形結(jié)合思想和運(yùn)算求解能力;根據(jù)圓的定義得到交點(diǎn)在以為直徑的圓上是求解本題的關(guān)鍵;屬于中檔題.16、4【解析】

由題意結(jié)合代數(shù)式的特點(diǎn)和均值不等式的結(jié)論整理計(jì)算即可求得最終結(jié)果.【詳解】.當(dāng)且僅當(dāng)時(shí)等號成立.據(jù)此可知:的最小值為4.【點(diǎn)睛】條件最值的求解通常有兩種方法:一是消元法,即根據(jù)條件建立兩個(gè)量之間的函數(shù)關(guān)系,然后代入代數(shù)式轉(zhuǎn)化為函數(shù)的最值求解;二是將條件靈活變形,利用常數(shù)代換的方法構(gòu)造和或積為常數(shù)的式子,然后利用基本不等式求解最值.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)(2,).【解析】

(1)利用極坐標(biāo)和直角坐標(biāo)的轉(zhuǎn)化公式求解.(2)先把兩個(gè)方程均化為普通方程,求解公共點(diǎn)的直角坐標(biāo),然后化為極坐標(biāo)即可.【詳解】(1)∵曲線C的極坐標(biāo)方程為,∴,則,即.(2),∴,聯(lián)立可得,(舍)或,公共點(diǎn)(,3),化為極坐標(biāo)(2,).【點(diǎn)睛】本題主要考查極坐標(biāo)和直角坐標(biāo)的轉(zhuǎn)化及交點(diǎn)的求解,熟記極坐標(biāo)和直角坐標(biāo)的轉(zhuǎn)化公式是求解的關(guān)鍵,交點(diǎn)問題一般是統(tǒng)一一種坐標(biāo)形式求解后再進(jìn)行轉(zhuǎn)化,側(cè)重考查數(shù)學(xué)運(yùn)算的核心素養(yǎng).18、(Ⅰ),;(Ⅱ)【解析】

(Ⅰ)當(dāng)時(shí),由,得到,兩邊同除以,得到.再根據(jù)是等差數(shù)列.求解.(Ⅱ),根據(jù)前n項(xiàng)和的定義得到,令,研究其增減性即可.【詳解】(Ⅰ)當(dāng)時(shí),,所以,即,所以.因?yàn)槭堑炔顢?shù)列.,所以,,令,,,所以,即;(Ⅱ),所以,,令,所以,,即,所以數(shù)列是遞增數(shù)列,所以,即.【點(diǎn)睛】本題主要考查等差數(shù)列的定義,前n項(xiàng)和以及數(shù)列的增減性,還考查了轉(zhuǎn)化化歸的思想和運(yùn)算求解的能力,屬于中檔題.19、(1)證明見解析;(2)【解析】

(1)連接交于點(diǎn),連接,通過證,并說明平面,來證明平面(2)采用建系法以、、所在直線分別為、、軸建立空間直角坐標(biāo)系,分別表示出對應(yīng)的點(diǎn)坐標(biāo),設(shè)平面的一個(gè)法向量為,結(jié)合直線對應(yīng)的和法向量,利用向量夾角的余弦公式進(jìn)行求解即可【詳解】證明:如圖,連接交于點(diǎn),連接,點(diǎn)為的中點(diǎn),點(diǎn)為的中點(diǎn),點(diǎn)為的重心,則,,,又平面,平面,平面;,,,,,,可得,又,則以、、所在直線分別為、、軸建立空間直角坐標(biāo)系,則,,,,,,.設(shè)平面的一個(gè)法向量為,由,取,得.設(shè)直線與平面所成角為,則.直線與平面所成角的正弦值為.【點(diǎn)睛】本題考查線面平行的判定定理的使用,利用建系法來求解線面夾角問題,整體難度不大,本題中的線面夾角的正弦值公式使用廣泛,需要識記20、(Ⅰ);(Ⅱ)4.【解析】

(Ⅰ)結(jié)合已知可得,求出a,b的值,即可得橢圓方程;(Ⅱ)由題意可知,直線的斜率存在,設(shè)出直線方程,聯(lián)立直線方程與橢圓方程,利用判別式等于0可得,聯(lián)立直線方程與圓的方程,結(jié)合根與系數(shù)的關(guān)系求得,利用弦長公式及點(diǎn)到直線的距離公式,求出,得到,整理后利用基本不等式求最值.【詳解】解:(Ⅰ)可得,結(jié)合,解得,,,得橢圓方程;(Ⅱ)易知直線的斜率k存在,設(shè):,由,得,由,得,∵,設(shè)點(diǎn)O到直線:的距離為d,,,由,得,,,∴∴,∴而,,易知,∴,則,四邊形的面積當(dāng)且僅當(dāng),即時(shí)取“”.∴四邊形面積的最大值為4.【點(diǎn)睛】本題考查了由求橢圓的標(biāo)準(zhǔn)方程,直線與橢圓的位置關(guān)系,考查了學(xué)生的計(jì)算能力,綜合性比較強(qiáng),屬于難題.21、(I);(Ⅱ)【解析】

(Ⅰ)設(shè)等差數(shù)列的公差為,則依題設(shè).由,可得.由,得,可得.所以.可得.(Ⅱ)設(shè),則.即,可得,且.所以,可知.所以,所以數(shù)列是首項(xiàng)為4,公比為2的等比數(shù)列.所以前項(xiàng)和.考點(diǎn):等差數(shù)列通項(xiàng)公式、用數(shù)列前項(xiàng)和求數(shù)列通項(xiàng)公

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論