山東省金鄉(xiāng)縣金育高級中學2025屆數(shù)學高二上期末調(diào)研模擬試題含解析_第1頁
山東省金鄉(xiāng)縣金育高級中學2025屆數(shù)學高二上期末調(diào)研模擬試題含解析_第2頁
山東省金鄉(xiāng)縣金育高級中學2025屆數(shù)學高二上期末調(diào)研模擬試題含解析_第3頁
山東省金鄉(xiāng)縣金育高級中學2025屆數(shù)學高二上期末調(diào)研模擬試題含解析_第4頁
山東省金鄉(xiāng)縣金育高級中學2025屆數(shù)學高二上期末調(diào)研模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

山東省金鄉(xiāng)縣金育高級中學2025屆數(shù)學高二上期末調(diào)研模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數(shù)y=的最大值為Ae-1 B.eC.e2 D.2.在中,角A,B,C的對邊分別為a,b,c.若,,則的形狀為()A.直角三角形 B.等邊三角形C.等腰直角三角形 D.等腰或直角三角形3.在四棱錐中,底面ABCD是正方形,E為PD中點,若,,,則()A. B.C. D.4.已知集合,,則()A. B.C. D.5.拋物線C:的焦點為F,P,R為C上位于F右側(cè)的兩點,若存在點Q使四邊形PFRQ為正方形,則()A. B.C. D.6.丹麥數(shù)學家琴生(Jensen)是19世紀對數(shù)學分析作出卓越貢獻的巨人,特別是在函數(shù)的凸凹性與不等式方面留下了很多寶貴的成果.設(shè)函數(shù)在區(qū)間內(nèi)的導函數(shù)為,在區(qū)間內(nèi)的導函數(shù)為,在區(qū)間內(nèi)恒成立,則稱函數(shù)在區(qū)間內(nèi)為“凸函數(shù)”,則下列函數(shù)在其定義域內(nèi)是“凸函數(shù)”的是()A. B.C. D.7.已知是拋物線的焦點,是拋物線的準線,點,連接交拋物線于點,,則的面積為()A.4 B.9C. D.8.已知點的坐標為(5,2),F(xiàn)為拋物線的焦點,若點在拋物線上移動,當取得最小值時,則點的坐標是A.(1,) B.C. D.9.某老師希望調(diào)查全校學生平均每天的自習時間.該教師調(diào)查了60位學生,發(fā)現(xiàn)他們每天的平均自習時間是3.5小時.這里的總體是()A.楊高的全校學生;B.楊高的全校學生的平均每天自習時間;C.所調(diào)查的60名學生;D.所調(diào)查的60名學生的平均每天自習時間.10.數(shù)列1,-3,5,-7,9,…的一個通項公式為A. B.C. D.11.若橢圓對稱軸是坐標軸,長軸長為,焦距為,則橢圓的方程()A. B.C.或 D.以上都不對12.《周髀算經(jīng)》中有這樣一個問題:冬至、小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種這十二個節(jié)氣,自冬至日起,其日影長依次成等差數(shù)列,立春當日日影長為9.5尺,立夏當日日影長為2.5尺,則冬至當日日影長為()A.12.5尺 B.13尺C.13.5尺 D.14尺二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)極值點的個數(shù)是______14.將參加冬季越野跑的名選手編號為:,采用系統(tǒng)抽樣方法抽取一個容量為的樣本,把編號分為組后,第一組的到這個編號中隨機抽得的號碼為,這名選手穿著三種顏色的衣服,從到穿紅色衣服,從到穿白色衣服,從到穿黃色衣服,則抽到穿白色衣服的選手人數(shù)為__________15.函數(shù)的單調(diào)遞減區(qū)間是___________.16.已知點和,圓,當圓C與線段沒有公共點時,則實數(shù)m的取值范圍為___________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)橢圓的左、右焦點分別為,,離心率為,短軸長為.(1)求橢圓的標準方程;(2)設(shè)左、右頂點分別為、,點在橢圓上(異于點、),求的值;(3)過點作一條直線與橢圓交于兩點,過作直線的垂線,垂足為.試問:直線與是否交于定點?若是,求出該定點的坐標,否則說明理由.18.(12分)某省食品藥品監(jiān)管局對15個大學食堂“進貨渠道合格性”和“食品安全”進行量化評估,滿分為10分,大部分大學食堂的評分在7~10分之間,以下表格記錄了它們的評分情況:分數(shù)段食堂個數(shù)1383(1)現(xiàn)從15個大學食堂中隨機抽取3個,求至多有1個大學食堂的評分不低于9分的概率;(2)以這15個大學食堂的評分數(shù)據(jù)評估全國的大學食堂的評分情況,若從全國的大學食堂中任選3個,記X表示抽到評分不低于9分的食堂個數(shù),求X的分布列及數(shù)學期望.19.(12分)總書記指出:“我們既要綠水青山,也要金山銀山.”新能源汽車環(huán)保、節(jié)能,以電代油,減少排放,既符合我國的國情,也代表了世界汽車產(chǎn)業(yè)發(fā)展的方向.工業(yè)部表示,到2025年中國的汽車總銷量將達到3500萬輛,并希望新能源汽車至少占總銷量的五分之一.江蘇某新能源公司年初購入一批新能源汽車充電樁,每臺16200元,第一年每臺設(shè)備的維修保養(yǎng)費用為1100元,以后每年增加400元,每臺充電樁每年可給公司收益8100元(1)每臺充電樁第幾年開始獲利?(2)每臺充電樁在第幾年時,年平均利潤最大20.(12分)已知橢圓的離心率為,且點在C上.(1)求橢圓C的標準方程;(2)設(shè),為橢圓C的左,右焦點,過右焦點的直線l交橢圓C于A,B兩點,若內(nèi)切圓的半徑為,求直線l的方程.21.(12分)已知橢圓的焦距為,離心率為.(1)求橢圓的方程;(2)若斜率為1的直線與橢圓交于不同的兩點,,求的最大值.22.(10分)已知是公差不為零等差數(shù)列,,且、、成等比數(shù)列(1)求數(shù)列的通項公式:(2)設(shè).數(shù)列{}的前項和為,求證:

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】,所以函數(shù)在上遞增,在上遞減,所以函數(shù)的最大值為時,y==故選A點睛:研究函數(shù)最值主要根據(jù)導數(shù)研究函數(shù)的單調(diào)性,找到最值,分式求導公式要記熟2、B【解析】直接利用正弦定理以及已知條件,求出、、的關(guān)系,即可判斷三角形的形狀【詳解】解:在中,已知,,,分別為角,,的對邊),由正弦定理可知:,所以,解得,所以為等邊三角形故選:【點睛】本題考查三角形的形狀的判斷,正弦定理的應用,考查計算能力,屬于基礎(chǔ)題3、C【解析】根據(jù)向量線性運算法則計算即可.【詳解】故選:C4、A【解析】由已知得,因為,所以,故選A5、A【解析】不妨設(shè),不妨設(shè),則,利用拋物線的對稱性及正方形的性質(zhì)列出的方程求得后可得結(jié)論【詳解】如圖所示,設(shè),不妨設(shè),則,由拋物線的對稱性及正方形的性質(zhì)可得,解得(正數(shù)舍去),所以故選:A6、B【解析】根據(jù)基本初等函數(shù)的導函數(shù)公式求各函數(shù)二階導函數(shù),判斷其在定義域上是否恒有,即可知正確選項.【詳解】A:,則,顯然定義域內(nèi)有正有負,故不是“凸函數(shù)”;B:,則,故是“凸函數(shù)”;C:,則,故不是“凸函數(shù)”;D:,則,顯然定義域內(nèi)有正有負,故不是“凸函數(shù)”;故選:B7、D【解析】根據(jù)題意求得拋物線的方程為和焦點為,由,得到為的中點,得到,代入拋物線方程,求得,進而求得的面積.【詳解】由直線是拋物線的準線,可得,即,所以拋物線的方程為,其焦點為,因為,可得可得三點共線,且為的中點,又因為,,所以,將點代入拋物線,可得,所以的面積為.故選:D.8、D【解析】過作準線的垂線,垂足為,則,當且僅當三點共線時等號成立,此時,故,所以,選D9、B【解析】由總體的概念可得答案.【詳解】某老師希望調(diào)查全校學生平均每天的自習時間,該教師調(diào)查了60位學生,發(fā)現(xiàn)他們每天的平均自習時間是3.5小時,這里的總體是全校學生平均每天的自習時間.故選:B.10、C【解析】觀察,奇偶相間排列,偶數(shù)位置為負,所以為,數(shù)字是奇數(shù),滿足2n-1,所以可求得通項公式.【詳解】由符號來看,奇數(shù)項為正,偶數(shù)項為負,所以符號滿足,由數(shù)值1,3,5,7,9…顯然滿足奇數(shù),所以滿足2n-1,所以通項公式為,選C.【點睛】本題考查觀察法求數(shù)列的通項公式,解題的關(guān)鍵是培養(yǎng)對數(shù)字的敏銳性,屬于基礎(chǔ)題.11、C【解析】求得、、的值,由此可得出所求橢圓的方程.【詳解】由題意可得,解得,,由于橢圓的對稱軸是坐標軸,則該橢圓的方程為或.故選:C.12、B【解析】設(shè)十二節(jié)氣自冬至日起的日影長構(gòu)成的等差數(shù)列為,利用等差數(shù)列的性質(zhì)即可求解.【詳解】設(shè)十二節(jié)氣自冬至日起的日影長構(gòu)成的等差數(shù)列為,則立春當日日影長為,立夏當日日影長為,故所以冬至當日日影長為.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、0【解析】通過導數(shù)判斷函數(shù)的單調(diào)性即可得極值點的情況.【詳解】因為,,所以在上恒成立,所以在上單調(diào)遞增,所以函數(shù)的極值點的個數(shù)是0,故答案為:0.14、【解析】,所以抽到穿白色衣服的選手號碼為,共15、【解析】首先對求導,可得,令,解可得答案【詳解】解:由得,故的單調(diào)遞減區(qū)間是故答案為:【點睛】本題考查利用導數(shù)研究函數(shù)的單調(diào)性,屬于基礎(chǔ)題.16、【解析】當點和都在圓的內(nèi)部時,結(jié)合點與圓的位置關(guān)系得出實數(shù)m的取值范圍,再由圓心到直線的距離大于半徑得出實數(shù)m的取值范圍.【詳解】當點和都在圓的內(nèi)部時,,解得或直線的方程為,即圓心到直線的距離為,當圓心到直線的距離大于半徑時,,且.綜上,實數(shù)m的取值范圍為.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2);(3)是,.【解析】(1)由題意,列出所滿足的等量關(guān)系式,結(jié)合橢圓中的關(guān)系,求得,從而求得橢圓的方程;(2)寫出,設(shè),利用斜率坐標公式求得兩直線斜率,結(jié)合點在橢圓上,得出,從而求得結(jié)果;(3)設(shè)直線的方程為:,,則,聯(lián)立方程可得:,結(jié)合韋達定理,得到,結(jié)合直線的方程,得到直線所過的定點坐標.【詳解】(1)由題意可知,,又,所以,所以橢圓的標準方程為:.(2),設(shè),因為點在橢圓上,所以,,又,.(3)設(shè)直線的方程為:,,則,聯(lián)立方程可得:,所以,所以,又直線的方程為:,令,則,所以直線恒過,同理,直線恒過,即直線與交于定點.【點睛】思路點睛:該題考查是有關(guān)橢圓的問題,解題思路如下:(1)根據(jù)題中所給的條件,結(jié)合橢圓中的關(guān)系,建立方程組求得橢圓方程;(2)根據(jù)斜率坐標公式,結(jié)合點在橢圓上,整理求得斜率之積,可以當結(jié)論來用;(3)將直線與橢圓方程聯(lián)立,結(jié)合韋達定理,結(jié)合直線方程,求得其過的定點.18、(1)(2)分布列見解析,【解析】(1)利用古典概型的概率公式可求概率.(2)由題設(shè)可得,故利用二項分布可求的分布列,利用公式可求其期望.【小問1詳解】設(shè)至多有1個大學食堂的評分不低于9分為事件,則.所以至多有1個大學食堂的評分不低于9分的概率為.【小問2詳解】任意一個大學食堂,其評分不低于9分的概率為,故,所以,,,,的分布列為:0123.19、(1)公司從第3年開始獲利;(2)第9年時每臺充電樁年平均利潤最大3600元【解析】(1)判斷已知條件是等差數(shù)列,然后求解利潤的表達式,推出表達式求解n即可(2)利用基本不等式求解最大值即可【詳解】(1)每年的維修保養(yǎng)費用是以1100為首項,400為公差的等差數(shù)列,設(shè)第n年時累計利潤為f(n),f(n)=8100n-[1100+1500+…+(400n+700)]-16200=8100n-n(200n+900)-16200=-200n2+7200n-16200=-200(n2-36n+81),開始獲利即f(n)>0,∴-200(n2-36n+81)>0,即n2-36n+81<0,解得,所以公司從第3年開始獲利;(2)每臺充電樁年平均利潤為當且僅當,即n=9時,等號成立即在第9年時每臺充電樁年平均利潤最大3600元【點睛】本題考查數(shù)列與函數(shù)的實際應用,基本不等式的應用,考查轉(zhuǎn)化思想以及計算能力,是中檔題20、(1)(2)或.【解析】(1)根據(jù)離心率可得的關(guān)系,再將的坐標代入方程后可求,從而可得橢圓的方程.(2)設(shè)直線的方程為,,結(jié)合內(nèi)切圓的半徑為可得,聯(lián)立直線方程和橢圓方程,消元后結(jié)合韋達定理可得關(guān)于的方程,求出其解后可得直線方程.【小問1詳解】因為橢圓的離心率為,故可設(shè),故橢圓方程為,代入得,故,故橢圓方程為:.【小問2詳解】的周長為,故.設(shè),由題設(shè)可得直線與軸不重合,故可設(shè)直線,則,由可得,整理得到,此時,故,解得,故直線的方程為:或.21、(1);(2).【解析】(1)由題設(shè)可得且,結(jié)合橢圓參數(shù)關(guān)系求,即可得橢圓的方程;(2)設(shè)直線為,聯(lián)立拋物線整理成一元二次方程的形式,由求m的范圍,再應用韋達定理及弦長

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論