徐州市重點名校2024年中考沖刺卷數(shù)學(xué)試題含解析_第1頁
徐州市重點名校2024年中考沖刺卷數(shù)學(xué)試題含解析_第2頁
徐州市重點名校2024年中考沖刺卷數(shù)學(xué)試題含解析_第3頁
徐州市重點名校2024年中考沖刺卷數(shù)學(xué)試題含解析_第4頁
徐州市重點名校2024年中考沖刺卷數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

徐州市重點名校2024年中考沖刺卷數(shù)學(xué)試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,BC平分∠ABE,AB∥CD,E是CD上一點,若∠C=35°,則∠BED的度數(shù)為()A.70° B.65° C.62° D.60°2.如圖,函數(shù)y=kx+b(k≠0)與y=(m≠0)的圖象交于點A(2,3),B(-6,-1),則不等式kx+b>的解集為()A. B. C. D.3.如圖,直線a∥b,直線c與直線a、b分別交于點A、點B,AC⊥AB于點A,交直線b于點C.如果∠1=34°,那么∠2的度數(shù)為()A.34° B.56° C.66° D.146°4.下列各數(shù)中最小的是()A.0 B.1 C.﹣ D.﹣π5.下列計算結(jié)果等于0的是()A. B. C. D.6.若△÷,則“△”可能是()A. B. C. D.7.下列各數(shù)中負數(shù)是()A.﹣(﹣2)B.﹣|﹣2|C.(﹣2)2D.﹣(﹣2)38.若關(guān)于x的分式方程的解為正數(shù),則滿足條件的正整數(shù)m的值為()A.1,2,3 B.1,2 C.1,3 D.2,39.如圖,菱形ABCD的邊長為2,∠B=30°.動點P從點B出發(fā),沿B-C-D的路線向點D運動.設(shè)△ABP的面積為y(B、P兩點重合時,△ABP的面積可以看作0),點P運動的路程為x,則y與x之間函數(shù)關(guān)系的圖像大致為()A. B. C. D.10.下列各式中計算正確的是A. B. C. D.11.如圖,正六邊形A1B1C1D1E1F1的邊長為2,正六邊形A2B2C2D2E2F2的外接圓與正六邊形A1B1C1D1E1F1的各邊相切,正六邊形A3B3C3D3E3F3的外接圓與正六邊形A2B2C2D2E2F2的各邊相切,…按這樣的規(guī)律進行下去,A11B11C11D11E11F11的邊長為()A. B. C. D.12.在中,,,,則的值是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.鼓勵科技創(chuàng)新、技術(shù)發(fā)明,北京市2012-2017年專利授權(quán)量如圖所示.根據(jù)統(tǒng)計圖中提供信息,預(yù)估2018年北京市專利授權(quán)量約______件,你的預(yù)估理由是______.14.分解因式:.15.如圖,、分別為△ABC的邊、延長線上的點,且DE∥BC.如果,CE=16,那么AE的長為_______16.計算的結(jié)果是_____17.因式分解:a3b﹣ab3=_____.18.關(guān)于x的方程kx2﹣(2k+1)x+k+2=0有實數(shù)根,則k的取值范圍是_____.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,AB是⊙O的直徑,點E是AD上的一點,∠DBC=∠BED.(1)請判斷直線BC與⊙O的位置關(guān)系,并說明理由;(2)已知AD=5,CD=4,求BC的長.20.(6分)如圖,在△ABC中,∠C=90°,以AB上一點O為圓心,OA長為半徑的圓恰好與BC相切于點D,分別交AC,AB于點E,F(xiàn).(1)若∠B=30°,求證:以A,O,D,E為頂點的四邊形是菱形;(2)填空:若AC=6,AB=10,連接AD,則⊙O的半徑為,AD的長為.21.(6分)如圖,矩形ABCD中,CE⊥BD于E,CF平分∠DCE與DB交于點F.求證:BF=BC;若AB=4cm,AD=3cm,求CF的長.22.(8分)如圖,在等邊△ABC中,點D是AB邊上一點,連接CD,將線段CD繞點C按順時針方向旋轉(zhuǎn)60°后得到CE,連接AE.求證:AE∥BC.23.(8分)九(3)班“2017年新年聯(lián)歡會”中,有一個摸獎游戲,規(guī)則如下:有4張紙牌,背面都是喜羊羊頭像,正面有2張笑臉、2張哭臉.現(xiàn)將4張紙牌洗勻后背面朝上擺放到桌上,然后讓同學(xué)去翻紙牌.(1)現(xiàn)小芳有一次翻牌機會,若正面是笑臉的就獲獎,正面是哭臉的不獲獎.她從中隨機翻開一張紙牌,求小芳獲獎的概率.(2)如果小芳、小明都有翻兩張牌的機會.小芳先翻一張,放回后再翻一張;小明同時翻開兩張紙牌.他們翻開的兩張紙牌中只要出現(xiàn)一張笑臉就獲獎.他們獲獎的機會相等嗎?通過樹狀圖分析說明理由.24.(10分)如圖,△ABC的頂點坐標(biāo)分別為A(1,3)、B(4,1)、C(1,1).在圖中以點O為位似中心在原點的另一側(cè)畫出△ABC放大1倍后得到的△A1B1C1,并寫出A1的坐標(biāo);請在圖中畫出△ABC繞點O逆時針旋轉(zhuǎn)90°后得到的△A1B1C1.25.(10分)在△ABC中,∠ACB=45°.點D(與點B、C不重合)為射線BC上一動點,連接AD,以AD為一邊且在AD的右側(cè)作正方形ADEF.(1)如果AB=AC.如圖①,且點D在線段BC上運動.試判斷線段CF與BD之間的位置關(guān)系,并證明你的結(jié)論.(2)如果AB≠AC,如圖②,且點D在線段BC上運動.(1)中結(jié)論是否成立,為什么?(3)若正方形ADEF的邊DE所在直線與線段CF所在直線相交于點P,設(shè)AC=4,BC=3,CD=x,求線段CP的長.(用含x的式子表示)26.(12分)在“傳箴言”活動中,某班團支部對該班全體團員在一個月內(nèi)所發(fā)箴言條數(shù)的情況進行了統(tǒng)計,并制成了如圖所示的兩幅不完整的統(tǒng)計圖:求該班團員在這一個月內(nèi)所發(fā)箴言的平均條數(shù)是多少?并將該條形統(tǒng)計圖補充完整;如果發(fā)了3條箴言的同學(xué)中有兩位男同學(xué),發(fā)了4條箴言的同學(xué)中有三位女同學(xué).現(xiàn)要從發(fā)了3條箴言和4條箴言的同學(xué)中分別選出一位參加該校團委組織的“箴言”活動總結(jié)會,請你用列表法或樹狀圖的方法求出所選兩位同學(xué)恰好是一位男同學(xué)和一位女同學(xué)的概率.27.(12分)如圖,AM是△ABC的中線,D是線段AM上一點(不與點A重合).DE∥AB交AC于點F,CE∥AM,連結(jié)AE.(1)如圖1,當(dāng)點D與M重合時,求證:四邊形ABDE是平行四邊形;(2)如圖2,當(dāng)點D不與M重合時,(1)中的結(jié)論還成立嗎?請說明理由.(3)如圖3,延長BD交AC于點H,若BH⊥AC,且BH=AM.①求∠CAM的度數(shù);②當(dāng)FH=,DM=4時,求DH的長.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】

由AB∥CD,根據(jù)兩直線平行,內(nèi)錯角相等,即可求得∠ABC的度數(shù),又由BC平分∠ABE,即可求得∠ABE的度數(shù),繼而求得答案.【詳解】∵AB∥CD,∠C=35°,∴∠ABC=∠C=35°,∵BC平分∠ABE,∴∠ABE=2∠ABC=70°,∵AB∥CD,∴∠BED=∠ABE=70°.故選:A.【點睛】本題考查了平行線的性質(zhì),解題的關(guān)鍵是掌握平行線的性質(zhì)進行解答.2、B【解析】

根據(jù)函數(shù)的圖象和交點坐標(biāo)即可求得結(jié)果.【詳解】解:不等式kx+b>的解集為:-6<x<0或x>2,

故選B.【點睛】此題考查反比例函數(shù)與一次函數(shù)的交點問題,解題關(guān)鍵是注意掌握數(shù)形結(jié)合思想的應(yīng)用.3、B【解析】分析:先根據(jù)平行線的性質(zhì)得出∠2+∠BAD=180°,再根據(jù)垂直的定義求出∠2的度數(shù).詳解:∵直線a∥b,∴∠2+∠BAD=180°.∵AC⊥AB于點A,∠1=34°,∴∠2=180°﹣90°﹣34°=56°.故選B.點睛:本題主要考查了平行線的性質(zhì),解題的關(guān)鍵是掌握兩直線平行,同旁內(nèi)角互補,此題難度不大.4、D【解析】

根據(jù)任意兩個實數(shù)都可以比較大小.正實數(shù)都大于0,負實數(shù)都小于0,正實數(shù)大于一切負實數(shù),兩個負實數(shù)絕對值大的反而小即可判斷.【詳解】﹣π<﹣<0<1.則最小的數(shù)是﹣π.故選:D.【點睛】本題考查了實數(shù)大小的比較,理解任意兩個實數(shù)都可以比較大?。龑崝?shù)都大于0,負實數(shù)都小于0,正實數(shù)大于一切負實數(shù),兩個負實數(shù)絕對值大的反而小是關(guān)鍵.5、A【解析】

各項計算得到結(jié)果,即可作出判斷.【詳解】解:A、原式=0,符合題意;

B、原式=-1+(-1)=-2,不符合題意;

C、原式=-1,不符合題意;

D、原式=-1,不符合題意,

故選:A.【點睛】本題考查了有理數(shù)的運算,熟練掌握運算法則是解本題的關(guān)鍵.6、A【解析】

直接利用分式的乘除運算法則計算得出答案.【詳解】。故選:A.【點睛】考查了分式的乘除運算,正確分解因式再化簡是解題關(guān)鍵.7、B【解析】

首先利用相反數(shù),絕對值的意義,乘方計算方法計算化簡,進一步利用負數(shù)的意義判定即可.【詳解】A、-(-2)=2,是正數(shù);B、-|-2|=-2,是負數(shù);C、(-2)2=4,是正數(shù);D、-(-2)3=8,是正數(shù).故選B.【點睛】此題考查負數(shù)的意義,利用相反數(shù),絕對值的意義,乘方計算方法計算化簡是解決問題的關(guān)鍵.8、C【解析】試題分析:解分式方程得:等式的兩邊都乘以(x﹣2),得x=2(x﹣2)+m,解得x=4﹣m,且x=4﹣m≠2,已知關(guān)于x的分式方的解為正數(shù),得m=1,m=3,故選C.考點:分式方程的解.9、C【解析】

先分別求出點P從點B出發(fā),沿B→C→D向終點D勻速運動時,當(dāng)0<x≤2和2<x≤4時,y與x之間的函數(shù)關(guān)系式,即可得出函數(shù)的圖象.【詳解】由題意知,點P從點B出發(fā),沿B→C→D向終點D勻速運動,則

當(dāng)0<x≤2,y=x,

當(dāng)2<x≤4,y=1,

由以上分析可知,這個分段函數(shù)的圖象是C.

故選C.10、B【解析】

根據(jù)完全平方公式對A進行判斷;根據(jù)冪的乘方與積的乘方對B、C進行判斷;根據(jù)合并同類項對D進行判斷.【詳解】A.,故錯誤.B.,正確.C.,故錯誤.D.,故錯誤.故選B.【點睛】考查完全平方公式,合并同類項,冪的乘方與積的乘方,熟練掌握它們的運算法則是解題的關(guān)鍵.11、A【解析】分析:連接OE1,OD1,OD2,如圖,根據(jù)正六邊形的性質(zhì)得∠E1OD1=60°,則△E1OD1為等邊三角形,再根據(jù)切線的性質(zhì)得OD2⊥E1D1,于是可得OD2=E1D1=×2,利用正六邊形的邊長等于它的半徑得到正六邊形A2B2C2D2E2F2的邊長=×2,同理可得正六邊形A3B3C3D3E3F3的邊長=()2×2,依此規(guī)律可得正六邊形A11B11C11D11E11F11的邊長=()10×2,然后化簡即可.詳解:連接OE1,OD1,OD2,如圖,∵六邊形A1B1C1D1E1F1為正六邊形,∴∠E1OD1=60°,∴△E1OD1為等邊三角形,∵正六邊形A2B2C2D2E2F2的外接圓與正六邊形A1B1C1D1E1F1的各邊相切,∴OD2⊥E1D1,∴OD2=E1D1=×2,∴正六邊形A2B2C2D2E2F2的邊長=×2,同理可得正六邊形A3B3C3D3E3F3的邊長=()2×2,則正六邊形A11B11C11D11E11F11的邊長=()10×2=.故選A.點睛:本題考查了正多邊形與圓的關(guān)系:把一個圓分成n(n是大于2的自然數(shù))等份,依次連接各分點所得的多邊形是這個圓的內(nèi)接正多邊形,這個圓叫做這個正多邊形的外接圓.記住正六邊形的邊長等于它的半徑.12、D【解析】

首先根據(jù)勾股定理求得AC的長,然后利用正弦函數(shù)的定義即可求解.【詳解】∵∠C=90°,BC=1,AB=4,

∴,∴,故選:D.【點睛】本題考查了三角函數(shù)的定義,求銳角的三角函數(shù)值的方法:利用銳角三角函數(shù)的定義,轉(zhuǎn)化成直角三角形的邊長的比.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、113407,北京市近兩年的專利授權(quán)量平均每年增加6458.5件.【解析】

依據(jù)北京市近兩年的專利授權(quán)量的增長速度,即可預(yù)估2018年北京市專利授權(quán)量.【詳解】解:∵北京市近兩年的專利授權(quán)量平均每年增加:(件),∴預(yù)估2018年北京市專利授權(quán)量約為106948+6458.5≈113407(件),故答案為:113407,北京市近兩年的專利授權(quán)量平均每年增加6458.5件.【點睛】此題考查統(tǒng)計圖的意義,解題的關(guān)鍵在于看懂圖中數(shù)據(jù).14、【解析】分析:要將一個多項式分解因式的一般步驟是首先看各項有沒有公因式,若有公因式,則把它提取出來,之后再觀察是否是完全平方公式或平方差公式,若是就考慮用公式法繼續(xù)分解因式.因此,先提取公因式后繼續(xù)應(yīng)用平方差公式分解即可:.15、1【解析】

根據(jù)DE∥BC,得到,再代入AC=11-AE,則可求AE長.【詳解】∵DE∥BC,∴.∵,CE=11,∴,解得AE=1.故答案為1.【點睛】本題主要考查相似三角形的判定和性質(zhì),正確寫出比例式是解題的關(guān)鍵.16、【解析】【分析】根據(jù)二次根式的運算法則進行計算即可求出答案.【詳解】==,故答案為.【點睛】本題考查二次根式的運算,解題的關(guān)鍵是熟練運用二次根式的運算法則.17、ab(a+b)(a﹣b)【解析】

先提取公因式ab,然后再利用平方差公式分解即可.【詳解】a3b﹣ab3=ab(a2﹣b2)=ab(a+b)(a﹣b),故答案為ab(a+b)(a﹣b).【點睛】本題考查了提公因式法與公式法的綜合運用,熟練掌握因式分解的方法是解本題的關(guān)鍵.分解因式的步驟一般為:一提(公因式),二套(公式),三徹底.18、k≤.【解析】

分k=1及k≠1兩種情況考慮:當(dāng)k=1時,通過解一元一次方程可得出原方程有解,即k=1符合題意;等k≠1時,由△≥1即可得出關(guān)于k的一元一次不等式,解之即可得出k的取值范圍.綜上此題得解.【詳解】當(dāng)k=1時,原方程為-x+2=1,解得:x=2,∴k=1符合題意;當(dāng)k≠1時,有△=[-(2k+1)]2-4k(k+2)≥1,解得:k≤且k≠1.綜上:k的取值范圍是k≤.故答案為:k≤.【點睛】本題考查了根的判別式以及一元二次方程的定義,分k=1及k≠1兩種情況考慮是解題的關(guān)鍵.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)BC與⊙O相切;理由見解析;(2)BC=6【解析】試題分析:(1)BC與⊙O相切;由已知可得∠BAD=∠BED又由∠DBC=∠BED可得∠BAD=∠DBC,由AB為直徑可得∠ADB=90°,從而可得∠CBO=90°,繼而可得BC與⊙O相切(2)由AB為直徑可得∠ADB=90°,從而可得∠BDC=90°,由BC與⊙O相切,可得∠CBO=90°,從而可得∠BDC=∠CBO,可得ΔABC~ΔBDC,所以得BCCD=ACBC,得試題解析:(1)BC與⊙O相切;∵BD=BD,∴∠BAD=∠BED,∵∠DBC=∠BED,∴∠BAD=∠DBC,∵AB為直徑,∴∠ADB=90°,∴∠BAD+∠ABD=90°,∴∠DBC+∠ABD=90°,∴∠CBO=90°,∴點B在⊙O上,∴BC與(2)∵AB為直徑,∴∠ADB=90°,∴∠BDC=90°,∵BC與⊙O相切,∴∠CBO=90°,∴∠BDC=∠CBO,∴ΔABC~ΔBDC,∴BCCD=ACBC,∴BC考點:1.切線的判定與性質(zhì);2.相似三角形的判定與性質(zhì);3.勾股定理.20、(1)見解析;(2)【解析】

(1)先通過證明△AOE為等邊三角形,得出AE=OD,再根據(jù)“同位角相等,兩直線平行”證明AE//OD,從而證得四邊形AODE是平行四邊形,再根據(jù)“一組鄰邊相等的平行四邊形為菱形”即可得證.(2)利用在Rt△OBD中,sin∠B==可得出半徑長度,在Rt△ODB中BD=,可求得BD的長,由CD=CB﹣BD可得CD的長,在RT△ACD中,AD=,即可求出AD長度.【詳解】解:(1)證明:連接OE、ED、OD,在Rt△ABC中,∵∠B=30°,∴∠A=60°,∵OA=OE,∴△AEO是等邊三角形,∴AE=OE=AO∵OD=OA,∴AE=OD∵BC是圓O的切線,OD是半徑,∴∠ODB=90°,又∵∠C=90°∴AC∥OD,又∵AE=OD∴四邊形AODE是平行四邊形,∵OD=OA∴四邊形AODE是菱形.(2)在Rt△ABC中,∵AC=6,AB=10,∴sin∠B==,BC=8∵BC是圓O的切線,OD是半徑,∴∠ODB=90°,在Rt△OBD中,sin∠B==,∴OB=OD∵AO+OB=AB=10,∴OD+OD=10∴OD=∴OB=OD=∴BD==5∴CD=CB﹣BD=3∴AD===3.【點睛】本題主要考查圓中的計算問題、菱形以及相似三角形的判定與性質(zhì)21、(1)見解析,(2)CF=cm.【解析】

(1)要求證:BF=BC只要證明∠CFB=∠FCB就可以,從而轉(zhuǎn)化為證明∠BCE=∠BDC就可以;(2)已知AB=4cm,AD=3cm,就是已知BC=BF=3cm,CD=4cm,在直角△BCD中,根據(jù)三角形的面積等于BD?CE=BC?DC,就可以求出CE的長.要求CF的長,可以在直角△CEF中用勾股定理求得.其中EF=BF-BE,BE在直角△BCE中根據(jù)勾股定理就可以求出,由此解決問題.【詳解】證明:(1)∵四邊形ABCD是矩形,∴∠BCD=90°,∴∠CDB+∠DBC=90°.∵CE⊥BD,∴∠DBC+∠ECB=90°.∴∠ECB=∠CDB.∵∠CFB=∠CDB+∠DCF,∠BCF=∠ECB+∠ECF,∠DCF=∠ECF,∴∠CFB=∠BCF∴BF=BC(2)∵四邊形ABCD是矩形,∴DC=AB=4(cm),BC=AD=3(cm).在Rt△BCD中,由勾股定理得BD=.又∵BD?CE=BC?DC,∴CE=.∴BE=.∴EF=BF﹣BE=3﹣.∴CF=cm.【點睛】本題考查矩形的判定與性質(zhì),等腰三角形的判定定理,等角對等邊,以及勾股定理,三角形面積計算公式的運用,靈活運用已知,理清思路,解決問題.22、見解析【解析】試題分析:根據(jù)等邊三角形的性質(zhì)得出AC=BC,∠B=∠ACB=60°,根據(jù)旋轉(zhuǎn)的性質(zhì)得出CD=CE,∠DCE=60°,求出∠BCD=∠ACE,根據(jù)SAS推出△BCD≌△ACE,根據(jù)全等得出∠EAC=∠B=60°,求出∠EAC=∠ACB,根據(jù)平行線的判定得出即可.試題解析:∵△ABC是等邊三角形,∴AC=BC,∠B=∠ACB=60°,∵線段CD繞點C順時針旋轉(zhuǎn)60°得到CE,∴CD=CE,∠DCE=60°,∴∠DCE=∠ACB,即∠BCD+∠DCA=∠DCA+∠ACE,∴∠BCD=∠ACE,在△BCD與△ACE中,,

∴△BCD≌△ACE,∴∠EAC=∠B=60°,∴∠EAC=∠ACB,∴AE∥BC.23、(1);(2)他們獲獎機會不相等,理由見解析.【解析】

(1)根據(jù)正面有2張笑臉、2張哭臉,直接利用概率公式求解即可求得答案;(2)根據(jù)題意分別列出表格,然后由表格即可求得所有等可能的結(jié)果與獲獎的情況,再利用概率公式求解即可求得他們獲獎的概率.【詳解】(1)∵有4張紙牌,背面都是喜羊羊頭像,正面有2張笑臉、2張哭臉,翻一次牌正面是笑臉的就獲獎,正面是哭臉的不獲獎,∴獲獎的概率是;故答案為;(2)他們獲獎機會不相等,理由如下:小芳:笑1笑2哭1哭2笑1笑1,笑1笑2,笑1哭1,笑1哭2,笑1笑2笑1,笑2笑2,笑2哭1,笑2哭2,笑2哭1笑1,哭1笑2,哭1哭1,哭1哭2,哭1哭2笑1,哭2笑2,哭2哭1,哭2哭2,哭2∵共有16種等可能的結(jié)果,翻開的兩張紙牌中只要出現(xiàn)笑臉的有12種情況,∴P(小芳獲獎)=;小明:笑1笑2哭1哭2笑1笑2,笑1哭1,笑1哭2,笑1笑2笑1,笑2哭1,笑2哭2,笑2哭1笑1,哭1笑2,哭1哭2,哭1哭2笑1,哭2笑2,哭2哭1,哭2∵共有12種等可能的結(jié)果,翻開的兩張紙牌中只要出現(xiàn)笑臉的有10種情況,∴P(小明獲獎)=,∵P(小芳獲獎)≠P(小明獲獎),∴他們獲獎的機會不相等.【點睛】本題考查了列表法或樹狀圖法求概率,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.24、(1)A(﹣1,﹣6);(1)見解析【解析】試題分析:(1)把每個坐標(biāo)做大1倍,并去相反數(shù).(1)橫縱坐標(biāo)對調(diào),并且把橫坐標(biāo)取相反數(shù).試題解析:解:(1)如圖,△A1B1C1為所作,A(﹣1,﹣6);(1)如圖,△A1B1C1為所作.25、(1)CF與BD位置關(guān)系是垂直,理由見解析;(2)AB≠AC時,CF⊥BD的結(jié)論成立,理由見解析;(3)見解析【解析】

(1)由∠ACB=15°,AB=AC,得∠ABD=∠ACB=15°;可得∠BAC=90°,由正方形ADEF,可得∠DAF=90°,AD=AF,∠DAF=∠DAC+∠CAF;∠BAC=∠BAD+∠DAC;得∠CAF=∠BAD.可證△DAB≌△FAC(SAS),得∠ACF=∠ABD=15°,得∠BCF=∠ACB+∠ACF=90°.即CF⊥BD.

(2)過點A作AG⊥AC交BC于點G,可得出AC=AG,易證:△GAD≌△CAF,所以∠ACF=∠AGD=15°,∠BCF=∠ACB+∠ACF=90°.即CF⊥BD.

(3)若正方形ADEF的邊DE所在直線與線段CF所在直線相交于點P,設(shè)AC=1,BC=3,CD=x,求線段CP的長.考慮點D的位置,分兩種情況去解答.①點D在線段BC上運動,已知∠BCA=15°,可求出AQ=CQ=1.即DQ=1-x,易證△AQD∽△DCP,再根據(jù)相似三角形的性質(zhì)求解問題.②點D在線段BC延長線上運動時,由∠BCA=15°,可求出AQ=CQ=1,則DQ=1+x.過A作AQ⊥BC交CB延長線于點Q,則△AGD∽△ACF,得CF⊥BD,由△AQD∽△DCP,得再根據(jù)相似三角形的性質(zhì)求解問題.【詳解】(1)CF與BD位置關(guān)系是垂直;證明如下:∵AB=AC,∠ACB=15°,∴∠ABC=15°.由正方形ADEF得AD=AF,∵∠DAF=∠BAC=90°,∴∠DAB=∠FAC,∴△DAB≌△FAC(SAS),∴∠ACF=∠ABD.∴∠BCF=∠ACB+∠ACF=90°.即CF⊥BD.(2)AB≠AC時,CF⊥BD的結(jié)論成立.理由是:過點A作GA⊥AC交BC于點G,∵∠ACB=15°,∴∠AGD=15°,∴AC=AG,同理可證:△GAD≌△CAF∴∠ACF=∠AGD=15°,∠BCF=∠ACB+∠ACF=90°,即CF⊥BD.(3)過點A作AQ⊥BC交CB的延長線于點Q,①點D在線段BC上運動時,∵∠BCA=15°,可求出AQ=CQ=1.∴DQ=1﹣x,△AQD∽△DCP,∴,∴,∴.②點D在線段BC延長線上運動時,∵∠BCA=15°,∴AQ=CQ=1,∴DQ=1+x.過A作AQ⊥BC,∴∠Q=∠FAD=90°,∵∠C′AF=∠C′CD=90°,∠AC′F=∠CC′D,∴∠ADQ=∠AFC′,則△AQD∽△AC′F.∴CF⊥BD,∴△AQD∽△DCP,∴,∴,∴.【點睛】綜合性題型,解題關(guān)鍵是靈活運用所學(xué)全等、相似、正方形等知識點.26、(1)3

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論