2025屆湖北省孝感一中數(shù)學(xué)高三第一學(xué)期期末檢測(cè)模擬試題含解析_第1頁
2025屆湖北省孝感一中數(shù)學(xué)高三第一學(xué)期期末檢測(cè)模擬試題含解析_第2頁
2025屆湖北省孝感一中數(shù)學(xué)高三第一學(xué)期期末檢測(cè)模擬試題含解析_第3頁
2025屆湖北省孝感一中數(shù)學(xué)高三第一學(xué)期期末檢測(cè)模擬試題含解析_第4頁
2025屆湖北省孝感一中數(shù)學(xué)高三第一學(xué)期期末檢測(cè)模擬試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2025屆湖北省孝感一中數(shù)學(xué)高三第一學(xué)期期末檢測(cè)模擬試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知復(fù)數(shù)滿足,(為虛數(shù)單位),則()A. B. C. D.32.已知等差數(shù)列中,,則()A.20 B.18 C.16 D.143.點(diǎn)為不等式組所表示的平面區(qū)域上的動(dòng)點(diǎn),則的取值范圍是()A. B. C. D.4.已知函數(shù)(,且)在區(qū)間上的值域?yàn)?,則()A. B. C.或 D.或45.設(shè)為定義在上的奇函數(shù),當(dāng)時(shí),(為常數(shù)),則不等式的解集為()A. B. C. D.6.函數(shù)在內(nèi)有且只有一個(gè)零點(diǎn),則a的值為()A.3 B.-3 C.2 D.-27.下列函數(shù)中,圖象關(guān)于軸對(duì)稱的為()A. B.,C. D.8.某幾何體的三視圖如圖所示(單位:cm),則該幾何體的表面積是()A. B. C. D.9.已知雙曲線的一條漸近線方程為,則雙曲線的離心率為()A. B. C. D.10.關(guān)于圓周率π,數(shù)學(xué)發(fā)展史上出現(xiàn)過許多很有創(chuàng)意的求法,如著名的浦豐實(shí)驗(yàn)和查理斯實(shí)驗(yàn).受其啟發(fā),我們也可以通過設(shè)計(jì)下面的實(shí)驗(yàn)來估計(jì)的值:先請(qǐng)全校名同學(xué)每人隨機(jī)寫下一個(gè)都小于的正實(shí)數(shù)對(duì);再統(tǒng)計(jì)兩數(shù)能與構(gòu)成鈍角三角形三邊的數(shù)對(duì)的個(gè)數(shù);最后再根據(jù)統(tǒng)計(jì)數(shù)估計(jì)的值,那么可以估計(jì)的值約為()A. B. C. D.11.雙曲線x2a2A.y=±2x B.y=±3x12.已知正項(xiàng)等比數(shù)列中,存在兩項(xiàng),使得,,則的最小值是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知x,y>0,且,則x+y的最小值為_____.14.已知復(fù)數(shù)(為虛數(shù)單位)為純虛數(shù),則實(shí)數(shù)的值為_____.15.已知實(shí)數(shù),滿足約束條件,則的最小值為______.16.已知關(guān)于空間兩條不同直線m、n,兩個(gè)不同平面、,有下列四個(gè)命題:①若且,則;②若且,則;③若且,則;④若,且,則.其中正確命題的序號(hào)為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)定義:若數(shù)列滿足所有的項(xiàng)均由構(gòu)成且其中有個(gè),有個(gè),則稱為“﹣數(shù)列”.(1)為“﹣數(shù)列”中的任意三項(xiàng),則使得的取法有多少種?(2)為“﹣數(shù)列”中的任意三項(xiàng),則存在多少正整數(shù)對(duì)使得且的概率為.18.(12分)已知橢圓C的中心在坐標(biāo)原點(diǎn),其短半軸長為1,一個(gè)焦點(diǎn)坐標(biāo)為,點(diǎn)在橢圓上,點(diǎn)在直線上,且.(1)證明:直線與圓相切;(2)設(shè)與橢圓的另一個(gè)交點(diǎn)為,當(dāng)?shù)拿娣e最小時(shí),求的長.19.(12分)如圖,在四棱錐中,底面為直角梯形,,,,,,點(diǎn)、分別為,的中點(diǎn),且平面平面.(1)求證:平面.(2)若,求直線與平面所成角的正弦值.20.(12分)已知函數(shù).(1)若對(duì)任意x0,f(x)0恒成立,求實(shí)數(shù)a的取值范圍;(2)若函數(shù)f(x)有兩個(gè)不同的零點(diǎn)x1,x2(x1x2),證明:.21.(12分)橢圓的左、右焦點(diǎn)分別為,橢圓上兩動(dòng)點(diǎn)使得四邊形為平行四邊形,且平行四邊形的周長和最大面積分別為8和.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)直線與橢圓的另一交點(diǎn)為,當(dāng)點(diǎn)在以線段為直徑的圓上時(shí),求直線的方程.22.(10分)如圖,三棱錐中,,,,,.(1)求證:;(2)求直線與平面所成角的正弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】,故,故選A.2、A【解析】

設(shè)等差數(shù)列的公差為,再利用基本量法與題中給的條件列式求解首項(xiàng)與公差,進(jìn)而求得即可.【詳解】設(shè)等差數(shù)列的公差為.由得,解得.所以.故選:A【點(diǎn)睛】本題主要考查了等差數(shù)列的基本量求解,屬于基礎(chǔ)題.3、B【解析】

作出不等式對(duì)應(yīng)的平面區(qū)域,利用線性規(guī)劃的知識(shí),利用的幾何意義即可得到結(jié)論.【詳解】不等式組作出可行域如圖:,,,的幾何意義是動(dòng)點(diǎn)到的斜率,由圖象可知的斜率為1,的斜率為:,則的取值范圍是:,,.故選:.【點(diǎn)睛】本題主要考查線性規(guī)劃的應(yīng)用,根據(jù)目標(biāo)函數(shù)的幾何意義結(jié)合斜率公式是解決本題的關(guān)鍵.4、C【解析】

對(duì)a進(jìn)行分類討論,結(jié)合指數(shù)函數(shù)的單調(diào)性及值域求解.【詳解】分析知,.討論:當(dāng)時(shí),,所以,,所以;當(dāng)時(shí),,所以,,所以.綜上,或,故選C.【點(diǎn)睛】本題主要考查指數(shù)函數(shù)的值域問題,指數(shù)函數(shù)的值域一般是利用單調(diào)性求解,側(cè)重考查數(shù)學(xué)運(yùn)算和數(shù)學(xué)抽象的核心素養(yǎng).5、D【解析】

由可得,所以,由為定義在上的奇函數(shù)結(jié)合增函數(shù)+增函數(shù)=增函數(shù),可知在上單調(diào)遞增,注意到,再利用函數(shù)單調(diào)性即可解決.【詳解】因?yàn)樵谏鲜瞧婧瘮?shù).所以,解得,所以當(dāng)時(shí),,且時(shí),單調(diào)遞增,所以在上單調(diào)遞增,因?yàn)?,故有,解?故選:D.【點(diǎn)睛】本題考查利用函數(shù)的奇偶性、單調(diào)性解不等式,考查學(xué)生對(duì)函數(shù)性質(zhì)的靈活運(yùn)用能力,是一道中檔題.6、A【解析】

求出,對(duì)分類討論,求出單調(diào)區(qū)間和極值點(diǎn),結(jié)合三次函數(shù)的圖像特征,即可求解.【詳解】,若,,在單調(diào)遞增,且,在不存在零點(diǎn);若,,在內(nèi)有且只有一個(gè)零點(diǎn),.故選:A.【點(diǎn)睛】本題考查函數(shù)的零點(diǎn)、導(dǎo)數(shù)的應(yīng)用,考查分類討論思想,熟練掌握函數(shù)圖像和性質(zhì)是解題的關(guān)鍵,屬于中檔題.7、D【解析】

圖象關(guān)于軸對(duì)稱的函數(shù)為偶函數(shù),用偶函數(shù)的定義及性質(zhì)對(duì)選項(xiàng)進(jìn)行判斷可解.【詳解】圖象關(guān)于軸對(duì)稱的函數(shù)為偶函數(shù);A中,,,故為奇函數(shù);B中,的定義域?yàn)?,不關(guān)于原點(diǎn)對(duì)稱,故為非奇非偶函數(shù);C中,由正弦函數(shù)性質(zhì)可知,為奇函數(shù);D中,且,,故為偶函數(shù).故選:D.【點(diǎn)睛】本題考查判斷函數(shù)奇偶性.判斷函數(shù)奇偶性的兩種方法:(1)定義法:對(duì)于函數(shù)的定義域內(nèi)任意一個(gè)都有,則函數(shù)是奇函數(shù);都有,則函數(shù)是偶函數(shù)(2)圖象法:函數(shù)是奇(偶)函數(shù)函數(shù)圖象關(guān)于原點(diǎn)(軸)對(duì)稱.8、D【解析】

根據(jù)三視圖判斷出幾何體為正四棱錐,由此計(jì)算出幾何體的表面積.【詳解】根據(jù)三視圖可知,該幾何體為正四棱錐.底面積為.側(cè)面的高為,所以側(cè)面積為.所以該幾何體的表面積是.故選:D【點(diǎn)睛】本小題主要考查由三視圖判斷原圖,考查錐體表面積的計(jì)算,屬于基礎(chǔ)題.9、B【解析】

由題意得出的值,進(jìn)而利用離心率公式可求得該雙曲線的離心率.【詳解】雙曲線的漸近線方程為,由題意可得,因此,該雙曲線的離心率為.故選:B.【點(diǎn)睛】本題考查利用雙曲線的漸近線方程求雙曲線的離心率,利用公式計(jì)算較為方便,考查計(jì)算能力,屬于基礎(chǔ)題.10、D【解析】

由試驗(yàn)結(jié)果知對(duì)0~1之間的均勻隨機(jī)數(shù),滿足,面積為1,再計(jì)算構(gòu)成鈍角三角形三邊的數(shù)對(duì),滿足條件的面積,由幾何概型概率計(jì)算公式,得出所取的點(diǎn)在圓內(nèi)的概率是圓的面積比正方形的面積,即可估計(jì)的值.【詳解】解:根據(jù)題意知,名同學(xué)取對(duì)都小于的正實(shí)數(shù)對(duì),即,對(duì)應(yīng)區(qū)域?yàn)檫呴L為的正方形,其面積為,若兩個(gè)正實(shí)數(shù)能與構(gòu)成鈍角三角形三邊,則有,其面積;則有,解得故選:.【點(diǎn)睛】本題考查線性規(guī)劃可行域問題及隨機(jī)模擬法求圓周率的幾何概型應(yīng)用問題.線性規(guī)劃可行域是一個(gè)封閉的圖形,可以直接解出可行域的面積;求解與面積有關(guān)的幾何概型時(shí),關(guān)鍵是弄清某事件對(duì)應(yīng)的面積,必要時(shí)可根據(jù)題意構(gòu)造兩個(gè)變量,把變量看成點(diǎn)的坐標(biāo),找到試驗(yàn)全部結(jié)果構(gòu)成的平面圖形,以便求解.11、A【解析】分析:根據(jù)離心率得a,c關(guān)系,進(jìn)而得a,b關(guān)系,再根據(jù)雙曲線方程求漸近線方程,得結(jié)果.詳解:∵e=因?yàn)闈u近線方程為y=±bax點(diǎn)睛:已知雙曲線方程x2a212、C【解析】

由已知求出等比數(shù)列的公比,進(jìn)而求出,嘗試用基本不等式,但取不到等號(hào),所以考慮直接取的值代入比較即可.【詳解】,,或(舍).,,.當(dāng),時(shí);當(dāng),時(shí);當(dāng),時(shí),,所以最小值為.故選:C.【點(diǎn)睛】本題考查等比數(shù)列通項(xiàng)公式基本量的計(jì)算及最小值,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】

處理變形x+y=x()+y結(jié)合均值不等式求解最值.【詳解】x,y>0,且,則x+y=x()+y1,當(dāng)且僅當(dāng)時(shí)取等號(hào),此時(shí)x=4,y=2,取得最小值1.故答案為:1【點(diǎn)睛】此題考查利用均值不等式求解最值,關(guān)鍵在于熟練掌握均值不等式的適用條件,注意考慮等號(hào)成立的條件.14、【解析】

利用復(fù)數(shù)的乘法求解再根據(jù)純虛數(shù)的定義求解即可.【詳解】解:復(fù)數(shù)為純虛數(shù),解得.故答案為:.【點(diǎn)睛】本題主要考查了根據(jù)復(fù)數(shù)為純虛數(shù)求解參數(shù)的問題,屬于基礎(chǔ)題.15、【解析】

作出滿足約束條件的可行域,將目標(biāo)函數(shù)視為可行解與點(diǎn)的斜率,觀察圖形斜率最小在點(diǎn)B處,聯(lián)立,解得點(diǎn)B坐標(biāo),即可求得答案.【詳解】作出滿足約束條件的可行域,該目標(biāo)函數(shù)視為可行解與點(diǎn)的斜率,故由題可知,聯(lián)立得,聯(lián)立得所以,故所以的最小值為故答案為:【點(diǎn)睛】本題考查分式型目標(biāo)函數(shù)的線性規(guī)劃問題,屬于簡(jiǎn)單題.16、③④【解析】

由直線與直線的位置關(guān)系,直線與平面的位置關(guān)系,面面垂直的判定定理和線面垂直的定義判斷.【詳解】①若且,的位置關(guān)系是平行、相交或異面,①錯(cuò);②若且,則或者,②錯(cuò);③若,設(shè)過的平面與交于直線,則,又,則,∴,③正確;④若,且,由線面垂直的定義知,④正確.故答案為:③④.【點(diǎn)睛】本題考查直線與直線的位置關(guān)系,直線與平面的位置關(guān)系,面面垂直的判定定理和線面垂直的定義,考查空間線面間的位置關(guān)系,掌握空間線線、線面、面面位置關(guān)系是解題基礎(chǔ).三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)16;(2)115.【解析】

(1)易得使得的情況只有“”,“”兩種,再根據(jù)組合的方法求解兩種情況分別的情況數(shù)再求和即可.(2)易得“”共有種,“”共有種.再根據(jù)古典概型的方法可知,利用組合數(shù)的計(jì)算公式可得,當(dāng)時(shí)根據(jù)題意有,共個(gè);當(dāng)時(shí)求得,再根據(jù)換元根據(jù)整除的方法求解滿足的正整數(shù)對(duì)即可.【詳解】解:(1)三個(gè)數(shù)乘積為有兩種情況:“”,“”,其中“”共有:種,“”共有:種,利用分類計(jì)數(shù)原理得:為“﹣數(shù)列”中的任意三項(xiàng),則使得的取法有:種.(2)與(1)同理,“”共有種,“”共有種,而在“﹣數(shù)列”中任取三項(xiàng)共有種,根據(jù)古典概型有:,再根據(jù)組合數(shù)的計(jì)算公式能得到:,時(shí),應(yīng)滿足,,共個(gè),時(shí),應(yīng)滿足,視為常數(shù),可解得,,根據(jù)可知,,,,根據(jù)可知,,(否則),下設(shè),則由于為正整數(shù)知必為正整數(shù),,,化簡(jiǎn)上式關(guān)系式可以知道:,均為偶數(shù),設(shè),則,由于中必存在偶數(shù),只需中存在數(shù)為的倍數(shù)即可,,.檢驗(yàn):符合題意,共有個(gè),綜上所述:共有個(gè)數(shù)對(duì)符合題意.【點(diǎn)睛】本題主要考查了排列組合的基本方法,同時(shí)也考查了組合數(shù)的運(yùn)算以及整數(shù)的分析方法等,需要根據(jù)題意18、(1)見解析;(2).【解析】

(1)分斜率為0,斜率不存在,斜率不為0三種情況討論,設(shè)的方程為,可求解得到,,可得到的距離為1,即得證;(2)表示的面積為,利用均值不等式,即得解.【詳解】(1)由題意,橢圓的焦點(diǎn)在x軸上,且,所以.所以橢圓的方程為.由點(diǎn)在直線上,且知的斜率必定存在,當(dāng)?shù)男甭蕿?時(shí),,,于是,到的距離為1,直線與圓相切.當(dāng)?shù)男甭什粸?時(shí),設(shè)的方程為,與聯(lián)立得,所以,,從而.而,故的方程為,而在上,故,從而,于是.此時(shí),到的距離為1,直線與圓相切.綜上,直線與圓相切.(2)由(1)知,的面積為,上式中,當(dāng)且僅當(dāng)?shù)忍?hào)成立,所以面積的最小值為1.此時(shí),點(diǎn)在橢圓的長軸端點(diǎn),為.不妨設(shè)為長軸左端點(diǎn),則直線的方程為,代入橢圓的方程解得,即,,所以.【點(diǎn)睛】本題考查了直線和橢圓綜合,考查了直線和圓的位置關(guān)系判斷,面積的最值問題,考查了學(xué)生綜合分析,數(shù)學(xué)運(yùn)算能力,屬于較難題.19、(1)見解析(2)【解析】

(1)首先可得,再面面垂直的性質(zhì)可得平面,即可得到,再由,即可得到線面垂直;(2)過點(diǎn)做平面的垂線,以為原點(diǎn),分別以,,為,,軸建立空間直角坐標(biāo)系,利用空間向量法求出線面角;【詳解】解:(1)∵,點(diǎn)為的中點(diǎn),∴,又∵平面平面,平面平面,平面,∴平面,又平面,∴,又∵,分別為,的中點(diǎn),∴,∴,又平面,平面,,∴平面.(2)過點(diǎn)做平面的垂線,以為原點(diǎn),分別以,,為,,軸建立空間直角坐標(biāo)系,∵,∴,,,,∴,,,設(shè)平面的法向量為,由,得,令,得,∴,∴直線與平面所成角的正弦值為.【點(diǎn)睛】本題考查線面垂直的判定,面面垂直的性質(zhì)定理的應(yīng)用,利用空間向量法求線面角,屬于中檔題.20、(1);(2)證明見解析.【解析】

(1)求出,判斷函數(shù)的單調(diào)性,求出函數(shù)的最大值,即求的范圍;(2)由(1)可知,.對(duì)分和兩種情況討論,構(gòu)造函數(shù),利用放縮法和基本不等式證明結(jié)論.【詳解】(1)由,得.令.當(dāng)時(shí),;當(dāng)時(shí),;在上單調(diào)遞增,在上單調(diào)遞減,.對(duì)任意恒成立,.(2)證明:由(1)可知,在上單調(diào)遞增,在上單調(diào)遞減,.若,則,令在上單調(diào)遞增,,.又,在上單調(diào)遞減,.若,則顯然成立.綜上,.又以上兩式左右兩端分別相加,得,即,所以.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)解決不等式恒成立問題,利用導(dǎo)數(shù)證明不等式,屬于難題.21、(1)(2)或【解析】

(1)根據(jù)題意計(jì)算得到,,得到橢圓方程.(2)設(shè),聯(lián)立方程得到,根據(jù),計(jì)算得到答案.【詳解】(1)由平行四邊形的周長為8,可知,即.由平行四邊形的最大面積為,可知,又,解得.所以橢圓方程為.(2)注意到直線的斜率不為0,且過定點(diǎn).設(shè),由消得,所以,因?yàn)?,所?因?yàn)辄c(diǎn)在以線段為直徑的圓上,所以,即,所以直線的方程或.【點(diǎn)睛】本題考查了橢圓方程,根據(jù)直線和

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論