版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆北京九中數(shù)學(xué)高二上期末檢測(cè)模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知一質(zhì)點(diǎn)的運(yùn)動(dòng)方程為,其中的單位為米,的單位為秒,則第1秒末的瞬時(shí)速度為()A. B.C. D.2.甲、乙兩組數(shù)的數(shù)據(jù)如莖葉圖所示,則甲、乙的平均數(shù)、方差、極差及中位數(shù)中相同的是()A.極差 B.方差C.平均數(shù) D.中位數(shù)3.已知直線與橢圓:()相交于,兩點(diǎn),且線段的中點(diǎn)在直線:上,則橢圓的離心率為()A. B.C. D.4.已知兩條不同直線和平面,下列判斷正確的是()A.若則 B.若則C.若則 D.若則5.若直線與直線垂直,則a的值為()A.2 B.1C. D.6.甲、乙兩名同學(xué)同時(shí)從教室出發(fā)去體育館打球(路程相等),甲一半時(shí)間步行,一半時(shí)間跑步;乙一半路程步行,一半路程跑步.如果兩人步行速度、跑步速度均相等,則()A.甲先到體育館 B.乙先到體育館C.兩人同時(shí)到體育館 D.不確定誰先到體育館7.拋物線的準(zhǔn)線方程是A. B.C. D.8.已知平面內(nèi)有一點(diǎn),平面的一個(gè)法向量為,則下列四個(gè)點(diǎn)中在平面內(nèi)的是()A. B.C. D.9.已知直線與直線,若,則()A.6 B.C.2 D.10.從集合{2,3,4,5}中隨機(jī)抽取一個(gè)數(shù)m,從集合{1,3,5}中隨機(jī)抽取一個(gè)數(shù)n,則向量=(m,n)與向量=(1,-1)垂直的概率為()A. B.C. D.11.經(jīng)過直線與直線的交點(diǎn),且平行于直線的直線方程為()A. B.C. D.12.雙曲線的兩個(gè)焦點(diǎn)為,,雙曲線上一點(diǎn)到的距離為8,則點(diǎn)到的距離為()A.2或12 B.2或18C.18 D.2二、填空題:本題共4小題,每小題5分,共20分。13.已知為等比數(shù)列的前n項(xiàng)和,若,,則_____________.14.已知數(shù)列滿足下列條件:①數(shù)列是等比數(shù)列;②數(shù)列是單調(diào)遞增數(shù)列;③數(shù)列的公比滿足.請(qǐng)寫出一個(gè)符合條件的數(shù)列的通項(xiàng)公式__________.15.等差數(shù)列前項(xiàng)之和為,若,則________16.在平面直角坐標(biāo)系中,已知雙曲線的左,右焦點(diǎn)分別為,,過且與圓相切的直線與雙曲線的一條漸近線相交于點(diǎn)(點(diǎn)在第一象限),若,則雙曲線的離心率___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)數(shù)列的前n項(xiàng)和為,(1)求數(shù)列的通項(xiàng)公式;(2)令,求數(shù)列的前n項(xiàng)和18.(12分)以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,已知直線的極坐標(biāo)方程為,曲線的參數(shù)方程是(為參數(shù)(1)求直線和曲線的普通方程;(2)直線與軸交于點(diǎn),與曲線交于,兩點(diǎn),求19.(12分)已知空間內(nèi)不重合的四點(diǎn)A,B,C,D的坐標(biāo)分別為,,,,且(1)求k,t的值;(2)求點(diǎn)B到直線CD的距離20.(12分)已知函數(shù)(1)求函數(shù)的圖象在點(diǎn)處的切線方程;(2)求函數(shù)的極值21.(12分)如圖,已知拋物線的焦點(diǎn)為F,拋物線C上的點(diǎn)到準(zhǔn)線的最小距離為1(1)求拋物線C的方程;(2)過點(diǎn)F作互相垂直的兩條直線l1,l2,l1與拋物線C交于A,B兩點(diǎn),l2與拋物線C交于C,D兩點(diǎn),M,N分別為弦AB,CD的中點(diǎn),求|MF|·|NF|的最小值22.(10分)如圖,在三棱錐中,是邊長為2的等邊三角形,,O是BC的中點(diǎn),(1)證明:平面平面BCD;(2)若三棱錐的體積為,E是棱AC上的一點(diǎn),當(dāng)時(shí),二面角E-BD-C大小為60°,求t的值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】求出即得解.【詳解】解:由題意得,故質(zhì)點(diǎn)在第1秒末的瞬時(shí)速度為.故選:C2、C【解析】根據(jù)莖葉圖中數(shù)據(jù)的波動(dòng)情況,可直接判斷方差不同;根據(jù)莖葉圖中的數(shù)據(jù),分別計(jì)算極差、中位數(shù)、平均數(shù),即可得出結(jié)果.【詳解】由莖葉圖可得:甲的數(shù)據(jù)更集中,乙的數(shù)據(jù)較分散,所以甲與乙的方差不同;甲的極差為;乙的極差為,所以甲與乙的極差不同;甲的中位數(shù)為,乙的中位數(shù)為,所以中位數(shù)不同;甲的平均數(shù)為,乙的平均數(shù)為,所以甲、乙的平均數(shù)相同;故選:C.3、A【解析】將直線代入橢圓方程整理得關(guān)于的方程,運(yùn)用韋達(dá)定理,求出中點(diǎn)坐標(biāo),再由條件得到,再由,,的關(guān)系和離心率公式,即可求出離心率.【詳解】解:將直線代入橢圓方程得,,即,設(shè),,,,則,即中點(diǎn)的橫坐標(biāo)是,縱坐標(biāo)是,由于線段的中點(diǎn)在直線上,則,又,則,,即橢圓的離心率為.故選:A4、D【解析】根據(jù)線線、線面、面面的平行與垂直的位置關(guān)系即可判斷.【詳解】解:對(duì)于選項(xiàng)A:若,則與可能平行,可能相交,可能異面,故選項(xiàng)A錯(cuò)誤;對(duì)于選項(xiàng)B:若,則,故選項(xiàng)B錯(cuò)誤;對(duì)于選項(xiàng)C:當(dāng)時(shí)不滿足,故選項(xiàng)C錯(cuò)誤;綜上,可知選項(xiàng)D正確.故選:D.5、A【解析】根據(jù)兩條直線垂直的條件列方程,解方程求得的值.【詳解】由于直線與直線垂直,所以,解得.故選:A6、A【解析】設(shè)出總路程與步行速度、跑步速度,表示出兩人所花時(shí)間后比較不等式大小【詳解】設(shè)總路程為,步行速度,跑步速度對(duì)于甲:,得對(duì)于乙:,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,而,故,乙花時(shí)間多,甲先到體育館故選:A7、C【解析】根據(jù)拋物線的概念,可得準(zhǔn)線方程為8、A【解析】設(shè)所求點(diǎn)的坐標(biāo)為,由,逐一驗(yàn)證選項(xiàng)即可【詳解】設(shè)所求點(diǎn)的坐標(biāo)為,則,因?yàn)槠矫娴囊粋€(gè)法向量為,所以,,對(duì)于選項(xiàng)A,,對(duì)于選項(xiàng)B,,對(duì)于選項(xiàng)C,,對(duì)于選項(xiàng)D,故選:A9、A【解析】根據(jù)兩直線垂直的充要條件得到方程,解得即可;【詳解】解:因?yàn)橹本€與直線,且,所以,解得;故選:A10、A【解析】根據(jù)分步計(jì)數(shù)乘法原理求得所有的)共有12個(gè),滿足兩個(gè)向量垂直的共有2個(gè),利用古典概型公式可得結(jié)果.【詳解】集合{2,3,4,5}中隨機(jī)抽取一個(gè)數(shù),有4種方法;從集合{1,3,5}中隨機(jī)抽取一個(gè)數(shù),有3種方法,所以,所有的共有個(gè),由向量與向量垂直,可得,即,故滿足向量與向量垂直的共有2個(gè):,所以向量與向量垂直的概率為,故選A.【點(diǎn)睛】本題主要考查分步計(jì)數(shù)乘法原理的應(yīng)用、向量垂直的性質(zhì)以及古典概型概率公式的應(yīng)用,屬于中檔題.在解古典概型概率題時(shí),首先求出樣本空間中基本事件的總數(shù),其次求出概率事件中含有多少個(gè)基本事件,然后根據(jù)公式求得概率.11、B【解析】求出兩直線的交點(diǎn)坐標(biāo),可設(shè)所求直線的方程為,將交點(diǎn)坐標(biāo)代入求得,即可的解.【詳解】解:由,解得,即兩直線的交點(diǎn)坐標(biāo)為,設(shè)所求直線的方程為,則有,解得,所以所求直線方程為,即.故選:B.12、C【解析】利用雙曲線的定義求.【詳解】解:由雙曲線定義可知:解得或(舍)∴點(diǎn)到的距離為18,故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、30【解析】根據(jù)等比數(shù)列性質(zhì)得,,也成等比,即可求得結(jié)果.【詳解】由等比數(shù)列的性質(zhì)可知,,,構(gòu)成首項(xiàng)為10,公比為1的等比數(shù)列,所以【點(diǎn)睛】本題考查等比數(shù)列性質(zhì),考查基本求解能力,屬基礎(chǔ)題.14、(答案不唯一)【解析】根據(jù)題意判斷數(shù)列特征,寫出一個(gè)符合題意的數(shù)列的通項(xiàng)公式即可.【詳解】因?yàn)閿?shù)列是等比數(shù)列,數(shù)列是單調(diào)遞增數(shù)列,數(shù)列公比滿足,所以等比數(shù)列公比,且各項(xiàng)均為負(fù)數(shù),符合題意的一個(gè)數(shù)列的通項(xiàng)公式為.故答案為:(答案不唯一)15、【解析】直接利用等差數(shù)列前項(xiàng)和公式和等差數(shù)列的性質(zhì)求解即可.【詳解】由已知條件得,故答案為:.16、2【解析】設(shè)切點(diǎn),根據(jù),可得,在中,利用余弦定理構(gòu)造齊次式,從而可得出答案.【詳解】解:設(shè)切點(diǎn),由,∴,∵為中點(diǎn),則為中位線,∴,,中,,,,∴.故答案為:2.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)根據(jù)給定條件結(jié)合“當(dāng)時(shí),”計(jì)算作答.(2)由(1)求出,利用裂項(xiàng)相消法計(jì)算得解.【小問1詳解】數(shù)列的前n項(xiàng)和為,,當(dāng)時(shí),,當(dāng)時(shí),,滿足上式,則,所以數(shù)列的通項(xiàng)公式是【小問2詳解】由(1)知,,所以,所以數(shù)列的前n項(xiàng)和18、(1),(2)4【解析】(1)根據(jù),即可將直線的極坐標(biāo)方程轉(zhuǎn)化為普通方程;消參數(shù),即可求出曲線的普通方程;(2)由題意易知,求出直線的參數(shù)方程,將其代入曲線的普通方程,利用一元二次方程根和系數(shù)關(guān)系式的應(yīng)用,即可求出結(jié)果【小問1詳解】解:直線極坐標(biāo)方程為,即,又,可得的普通方程為,曲線的參數(shù)方程是(為參數(shù),消參數(shù),所以曲線的普通方程為【小問2詳解】解:在中令得,,傾斜角,的參數(shù)方程可設(shè)為,即(為參數(shù)),將其代入,得,,設(shè),對(duì)應(yīng)的參數(shù)分別為,,則,,,異號(hào),.19、(1),(2)【解析】(1)由,可得存在唯一實(shí)數(shù),使得,列出方程組,解之即可得解;(2)設(shè)直線與所成的角為,求出,再根據(jù)點(diǎn)B到直線CD的距離為即可得解【小問1詳解】解:,,因?yàn)椋源嬖谖ㄒ粚?shí)數(shù),使得,所以,所以,解得,所以,;【小問2詳解】解:,則,設(shè)直線與所成的角為,則,所以點(diǎn)B到直線CD的距離為.20、(1)(2)極大值為12,極小值-15【解析】(1)利用導(dǎo)數(shù)的幾何意義求解即可.(2)利用導(dǎo)數(shù)求解極值即可.【小問1詳解】,,切點(diǎn)為,故切線方程為,即;【小問2詳解】令,得或列表:-12+0-0+單調(diào)遞增12單調(diào)遞減-15單調(diào)遞增函數(shù)的極大值為,函數(shù)的極小值為.21、(1)(2)8【解析】(1)由拋物線C上的點(diǎn)到準(zhǔn)線的最小距離為1,所以,即可求得拋物線的方程;(2)設(shè)直線AB的斜率為k,則直線CD的斜率為,得到直線AB的方程為,聯(lián)立方程,求得,進(jìn)而求得的坐標(biāo),得到的表達(dá)式,結(jié)合基本不等式,即可求解.【小問1詳解】解:因?yàn)閽佄锞€C上的點(diǎn)到準(zhǔn)線的最小距離為1,所以,解得,所以拋物線C的方程為【小問2詳解】解:由(1)可知焦點(diǎn)為F(1,0),由已知可得ABCD,所以直線AB,CD的斜率都存在且均不為0,設(shè)直線AB斜率為k,則直線CD的斜率為,所以直線AB的方程為,聯(lián)立方程,消去x得,設(shè)點(diǎn)A(x1,y1),B(x2,y2),則,因?yàn)镸(xM,yM)為弦AB的中點(diǎn),所以,由,得,所以點(diǎn),同理可得,所以,=,所以,當(dāng)且僅當(dāng),即時(shí),等號(hào)成立,所以的最小值為22、(1)證明見解析(2)3【解析】(1)證得平面BCD,結(jié)合面面垂直判定定理即可得出結(jié)論;(2)建立空間直角坐標(biāo)系,利用空間向量求二面角的公式可得,進(jìn)而解方程即可求出結(jié)果.【小問1詳解】因?yàn)椋琌是BC的中點(diǎn),所以,又因?yàn)?,且,平面BCD,平面BCD,所以平面BCD,因?yàn)槠矫鍭BC,所以平面平面BCD
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度租賃房屋租賃解除合同2篇
- 2025年消防器材銷售與消防系統(tǒng)升級(jí)及維護(hù)合同3篇
- 二零二五年度國際時(shí)裝周模特簽約合同4篇
- 消費(fèi)金融行業(yè)2024年信用回顧與2025年展望 -新世紀(jì)
- 二零二五版模具行業(yè)市場(chǎng)調(diào)研合同4篇
- 二零二五版電子設(shè)備模具采購合作協(xié)議4篇
- 2025年金融機(jī)構(gòu)外匯借款合同范本及信用評(píng)估體系3篇
- 貧困助學(xué)金感謝信500字(合集3篇)
- 練習(xí)版2025年度影視制作與發(fā)行合同2篇
- pe波紋管 施工方案
- 大學(xué)生國家安全教育意義
- 2024年保育員(初級(jí))培訓(xùn)計(jì)劃和教學(xué)大綱-(目錄版)
- 河北省石家莊市2023-2024學(xué)年高二上學(xué)期期末考試 語文 Word版含答案
- 企業(yè)正確認(rèn)識(shí)和運(yùn)用矩陣式管理
- 分布式光伏高處作業(yè)專項(xiàng)施工方案
- 陳閱增普通生物學(xué)全部課件
- 檢驗(yàn)科主任就職演講稿范文
- 人防工程主體監(jiān)理質(zhì)量評(píng)估報(bào)告
- 20225GRedCap通信技術(shù)白皮書
- 燃?xì)庥邢薰究蛻舴?wù)規(guī)范制度
- 延遲交稿申請(qǐng)英文
評(píng)論
0/150
提交評(píng)論