2025屆上海市民立中學(xué)高二上數(shù)學(xué)期末質(zhì)量檢測(cè)試題含解析_第1頁(yè)
2025屆上海市民立中學(xué)高二上數(shù)學(xué)期末質(zhì)量檢測(cè)試題含解析_第2頁(yè)
2025屆上海市民立中學(xué)高二上數(shù)學(xué)期末質(zhì)量檢測(cè)試題含解析_第3頁(yè)
2025屆上海市民立中學(xué)高二上數(shù)學(xué)期末質(zhì)量檢測(cè)試題含解析_第4頁(yè)
2025屆上海市民立中學(xué)高二上數(shù)學(xué)期末質(zhì)量檢測(cè)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩10頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2025屆上海市民立中學(xué)高二上數(shù)學(xué)期末質(zhì)量檢測(cè)試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知雙曲線的離心率為2,且與橢圓有相同的焦點(diǎn),則該雙曲線的漸近線方程為()A. B.C. D.2.已知不等式解集為,下列結(jié)論正確的是()A. B.C D.3.高中生在假期參加志愿者活動(dòng),既能服務(wù)社會(huì)又能鍛煉能力.某同學(xué)計(jì)劃在福利院、社區(qū)、圖書(shū)館和醫(yī)院中任選兩個(gè)單位參加志愿者活動(dòng),則參加圖書(shū)館活動(dòng)的概率為()A. B.C. D.4.若直線l與橢圓交于點(diǎn)A、B,線段的中點(diǎn)為,則直線l的方程為()A. B.C. D.5.古希臘數(shù)學(xué)家阿波羅尼斯的著作《圓錐曲線論》是古代世界光輝的科學(xué)成果,它將圓錐曲線的性質(zhì)網(wǎng)羅殆盡,幾乎使后人沒(méi)有插足的余地.他證明過(guò)這樣一個(gè)命題:平面內(nèi)與兩定點(diǎn)距離的比為常數(shù)且的點(diǎn)的軌跡是圓,后人將之稱為阿波羅尼斯圓.現(xiàn)有橢圓為橢圓長(zhǎng)軸的端點(diǎn),為橢圓短軸的端點(diǎn),,分別為橢圓的左右焦點(diǎn),動(dòng)點(diǎn)滿足面積的最大值為面積的最小值為,則橢圓的離心率為()A. B.C. D.6.已知E、F分別為橢圓的左、右焦點(diǎn),傾斜角為的直線l過(guò)點(diǎn)E,且與橢圓交于A,B兩點(diǎn),則的周長(zhǎng)為A.10 B.12C.16 D.207.設(shè)為可導(dǎo)函數(shù),且滿足,則曲線在點(diǎn)處的切線的斜率是A. B.C. D.8.函數(shù)在上是單調(diào)遞增函數(shù),則的最大值等于()A.2 B.3C.5 D.69.已知橢圓:的左、右焦點(diǎn)為,,上頂點(diǎn)為P,則()A.為銳角三角形 B.為鈍角三角形C.為直角三角形 D.,,三點(diǎn)構(gòu)不成三角形10.設(shè),則“”是“直線與直線”平行的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.即不充分也不必要條件11.拋物線y=4x2的焦點(diǎn)坐標(biāo)是()A.(0,1) B.(1,0)C. D.12.在平行六面體ABCD﹣A1B1C1D1中,AC與BD的交點(diǎn)為M,設(shè)=,=,=,則=()A.++ B.+C.++ D.+二、填空題:本題共4小題,每小題5分,共20分。13.已知命題p:若,則,那么命題p的否命題為_(kāi)_____14.圓錐的軸截面是邊長(zhǎng)為2的等邊三角形,為底面中心,為的中點(diǎn),動(dòng)點(diǎn)在圓錐底面內(nèi)(包括圓周).若,則點(diǎn)形成的軌跡的長(zhǎng)度為_(kāi)_____15.已知數(shù)列{}的前n項(xiàng)和為,則該數(shù)列的通項(xiàng)公式__________.16.已知某次數(shù)學(xué)期末試卷中有8道4選1的單選題三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在平面直角坐標(biāo)系中,已知拋物線的焦點(diǎn)與橢圓的右焦點(diǎn)重合(1)求橢圓的離心率;(2)求拋物線的方程;(3)設(shè)是拋物線上一點(diǎn),且,求點(diǎn)的坐標(biāo)18.(12分)如圖,在三棱錐中,是邊長(zhǎng)為2的等邊三角形,,O是BC的中點(diǎn),(1)證明:平面平面BCD;(2)若三棱錐的體積為,E是棱AC上的一點(diǎn),當(dāng)時(shí),二面角E-BD-C大小為60°,求t的值19.(12分)已知圓C的方程為.(1)直線l1過(guò)點(diǎn)P(3,1),傾斜角為45°,且與圓C交于A,B兩點(diǎn),求AB的長(zhǎng);(2)求過(guò)點(diǎn)P(3,1)且與圓C相切的直線l2的方程.20.(12分)在等比數(shù)列中,是與的等比中項(xiàng),與的等差中項(xiàng)為6(1)求的通項(xiàng)公式;(2)設(shè),求數(shù)列前項(xiàng)和21.(12分)已知橢圓:經(jīng)過(guò)點(diǎn),設(shè)右焦點(diǎn)F,橢圓上存在點(diǎn)Q,使QF垂直于x軸且.(1)求橢圓的方程;(2)過(guò)點(diǎn)的直線與橢圓交于D,G兩點(diǎn).是否存在直線使得以DG為直徑的圓過(guò)點(diǎn)E(-1,0)?若存在,求出直線的方程,若不存在,說(shuō)明理由.22.(10分)已知圓關(guān)于直線對(duì)稱,且圓心C在軸上.(1)求圓C的方程;(2)直線與圓C交于A、B兩點(diǎn),若為等腰直角三角形,求直線的方程.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】求出焦點(diǎn),則可得出,即可求出漸近線方程.【詳解】由橢圓可得焦點(diǎn)為,則設(shè)雙曲線方程為,可得,則離心率,解得,則,所以漸近線方程為.故選:B.2、C【解析】根據(jù)不等式解集為,得方程解為或,且,利用韋達(dá)定理即可將用表示,即可判斷各選項(xiàng)的正誤.【詳解】解:因?yàn)椴坏仁浇饧癁椋苑匠痰慕鉃榛?,且,所以,所以,所以,故ABD錯(cuò)誤;,故C正確.故選:C.3、D【解析】對(duì)4個(gè)單位分別編號(hào),利用列舉法求出概率作答.【詳解】記福利院、社區(qū)、圖書(shū)館和醫(yī)院分別為A,B,C,D,從4個(gè)單位中任選兩個(gè)的試驗(yàn)有AB,AC,AD,BC,BD,CD,共6個(gè)基本事件,它們等可能,其中有參加圖書(shū)館活動(dòng)的事件有AC,BC,CD,共3個(gè)基本事件,所以參加圖書(shū)館活動(dòng)的概率.故選:D4、A【解析】用點(diǎn)差法即可獲解【詳解】設(shè).則兩式相減得即因?yàn)?線段AB的中點(diǎn)為,所以所以所以直線的方程為,即故選:A5、A【解析】由題可得動(dòng)點(diǎn)M的軌跡方程,可得,,即求.【詳解】設(shè),,由,可得=2,化簡(jiǎn)得.∵△MAB面積的最大值為面積的最小值為,∴,,∴,即,∴故選:A6、D【解析】利用橢圓的定義即可得到結(jié)果【詳解】橢圓,可得,三角形的周長(zhǎng),,所以:周長(zhǎng),由橢圓的第一定義,,所以,周長(zhǎng)故選D【點(diǎn)睛】本題考查橢圓簡(jiǎn)單性質(zhì)的應(yīng)用,橢圓的定義的應(yīng)用,三角形的周長(zhǎng)的求法,屬于基本知識(shí)的考查7、D【解析】由題,為可導(dǎo)函數(shù),,即曲線在點(diǎn)處的切線的斜率是,選D【點(diǎn)睛】本題考查導(dǎo)數(shù)的定義,切線的斜率,以及極限的運(yùn)算,本題解題的關(guān)鍵是對(duì)所給的極限式進(jìn)行整理,得到符合導(dǎo)數(shù)定義的形式8、B【解析】由f(x)=x3﹣ax在[1,+∞)上是單調(diào)增函數(shù),得到在[1,+∞)上,恒成立,從而解得a≤3,故a的最大值為3【詳解】解:∵f(x)=x3﹣ax在[1,+∞)上是單調(diào)增函數(shù)∴在[1,+∞)上恒成立即a≤3x2,∵x∈[1,+∞)時(shí),3x2≥3恒成立,∴a≤3,∴a的最大值是3故選:B9、A【解析】根據(jù)題意求得,要判斷的形狀,只需要看是什么角即可,利用余弦定理判斷,從而可得結(jié)論.【詳解】解:由橢圓:,得,則,則,所以且為銳角,因?yàn)?,所以銳角,所以為銳角三角形.故選:A.10、D【解析】由兩直線平行確定參數(shù)值,根據(jù)充分必要條件的定義判斷【詳解】時(shí),兩直線方程分別為,,它們重合,不平行,因此不是充分條件;反之,兩直線平行時(shí),,解得或,由上知時(shí),兩直線不平行,時(shí),兩直線方程分別為,,平行,因此,本題中也不是必要條件故選:D11、C【解析】將拋物線方程化為標(biāo)準(zhǔn)方程,由此可拋物線的焦點(diǎn)坐標(biāo)得選項(xiàng).【詳解】解:將拋物線y=4x2的化為標(biāo)準(zhǔn)方程為x2=y(tǒng),p=,開(kāi)口向上,焦點(diǎn)在y軸的正半軸上,故焦點(diǎn)坐標(biāo)為(0,).故選:C12、B【解析】利用向量三角形法則、平行四邊形法則、向量共線定理即可得出【詳解】如圖所示,∵=+,又=,=-,=,∴=+,故選:B二、填空題:本題共4小題,每小題5分,共20分。13、若,則【解析】直接利用否命題的定義,對(duì)原命題的條件與結(jié)論都否定即可得結(jié)果【詳解】因?yàn)槊}:若,則,所以否定條件與結(jié)論后,可得命題的否命題為若,則,故答案為若,則,【點(diǎn)睛】本題主要考查命題的否命題,意在考查對(duì)基礎(chǔ)知識(shí)的掌握與應(yīng)用,屬于基礎(chǔ)題14、【解析】建立空間直角坐標(biāo)系設(shè),,,,于是,,因?yàn)?,所以,從而,,此為點(diǎn)形成的軌跡方程,其在底面圓盤(pán)內(nèi)的長(zhǎng)度為15、2n+1【解析】由計(jì)算,再計(jì)算可得結(jié)論【詳解】由題意時(shí),,又適合上式,所以故答案為:【點(diǎn)睛】本題考查由求通項(xiàng)公式,解題根據(jù)是,但要注意此式不含,16、##0.84375【解析】合理設(shè)出事件,利用全概率公式進(jìn)行求解.【詳解】設(shè)小王從這8題中任選1題,且作對(duì)為事件A,選到能完整做對(duì)的5道題為事件B,選到有思路的兩道題為事件C,選到完全沒(méi)有思路為事件D,則,,,由全概率公式可得:PA=PB故答案為:三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2);(3)【解析】(1)由橢圓方程即可求出離心率.(2)求出橢圓的焦點(diǎn)即為拋物線的焦點(diǎn),即可求出答案.(3)由拋物線定義可求出點(diǎn)的坐標(biāo)【小問(wèn)1詳解】由題意可知,.【小問(wèn)2詳解】橢圓的右焦點(diǎn)為,故拋物線的焦點(diǎn)為.拋物線的方程為.【小問(wèn)3詳解】設(shè)的坐標(biāo)為,,解得,.故的坐標(biāo)為.18、(1)證明見(jiàn)解析(2)3【解析】(1)證得平面BCD,結(jié)合面面垂直判定定理即可得出結(jié)論;(2)建立空間直角坐標(biāo)系,利用空間向量求二面角的公式可得,進(jìn)而解方程即可求出結(jié)果.【小問(wèn)1詳解】因?yàn)?,O是BC的中點(diǎn),所以,又因?yàn)椋?,平面BCD,平面BCD,所以平面BCD,因?yàn)槠矫鍭BC,所以平面平面BCD【小問(wèn)2詳解】連接OD,又因?yàn)槭沁呴L(zhǎng)為2的等邊三角形,所以,由(1)知平面BCD,所以AO,BC,DO兩兩互相垂直以O(shè)為坐標(biāo)原點(diǎn),OA,OB,OD所在直線分別為x軸,y軸,z軸建立如圖所示空間直角坐標(biāo)系設(shè),則O(0,0,0),A(0,0,m),B(1,0,0),C(-1,0,0),,因?yàn)锳-BCD的體積為,所以,解得,即A(0,0,3),,∵,∴,設(shè)平面BCD的法向量為,,則,取平面BCD的法向量為,,,設(shè)是平面BDE的法向量,則,∴取平面BDE的法向量,解得或(舍)19、(1)(2)x=3或【解析】(1)首先利用點(diǎn)斜式求出直線的方程,再利用點(diǎn)到直線的距離公式求出圓心到直線的距離,最后利用垂直定理、勾股定理計(jì)算可得;(2)依題意可得點(diǎn)在圓外,分直線的斜率存在與不存在兩種情況討論,當(dāng)直線的斜率不存在直線得到直線方程,但直線的斜率存在時(shí)設(shè)直線方程為,利用點(diǎn)到直線的距離公式得到方程,解得,即可得解;【小問(wèn)1詳解】解:根據(jù)題意,直線的方程為,即,則圓心到直線的距離為故;【小問(wèn)2詳解】解:根據(jù)題意,點(diǎn)在圓外,分兩種情況討論:當(dāng)直線的斜率不存在時(shí),過(guò)點(diǎn)的直線方程是,此時(shí)與圓C:相切,滿足題意;當(dāng)直線的斜率存在時(shí),設(shè)直線方程為,即,直線與圓相切時(shí),圓心到直線的距離為解得此時(shí),直線的方程為,所以滿足條件的直線的方程是或.20、(1);(2).【解析】(1)設(shè)出等比數(shù)列的公比,根據(jù)給定條件列出方程求解作答.(2)由(1)的結(jié)論求出,再利用分組求和法計(jì)算作答.【小問(wèn)1詳解】設(shè)等比數(shù)列公比為,依題意,,即,解得,所以的通項(xiàng)公式【小問(wèn)2詳解】由(1)知,,.21、(1);(2)存在,或.【解析】(1)根據(jù)題意,列出的方程組,求得,則橢圓方程得解;(2)對(duì)直線的斜率進(jìn)行討論,當(dāng)斜率存在時(shí),設(shè)出直線方程,聯(lián)立橢圓方程,利用韋達(dá)定理,轉(zhuǎn)化題意為,求解即可.小問(wèn)1詳解】由題意,得,設(shè),將代入橢圓方程,得,所以,解得,所以橢圓的方程為.【小問(wèn)2詳解】當(dāng)斜率不存在時(shí),即時(shí),,為橢圓短軸兩端點(diǎn),則以為直徑的圓為,恒過(guò)點(diǎn),滿足題意;當(dāng)斜率存在時(shí),設(shè),,,由得:,,解得:,,若以為

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論