版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆湖南省長沙瀏陽市數(shù)學高二上期末學業(yè)質(zhì)量監(jiān)測試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知等比數(shù)列的公比q為整數(shù),且,,則()A.2 B.3C.-2 D.-32.已知為原點,點,以為直徑的圓的方程為()A. B.C. D.3.已知向量,則下列結(jié)論正確的是()A.B.C.D.4.將函數(shù)圖象上所有點橫坐標伸長到原來的2倍,縱坐標不變,再將所得圖象向右平移個單位長度,得到函數(shù)的圖象,則()A. B.C. D.5.在等差數(shù)列中,若,,則公差d=()A. B.C.3 D.-36.命題“,均有”的否定為()A.,均有 B.,使得C.,使得 D.,均有7.設雙曲線的虛軸長為,焦距為,則雙曲線的漸近線方程為()A. B.C. D.8.已知拋物線上的點到該拋物線焦點的距離為,則拋物線的方程是()A. B.C. D.9.已知兩個向量,,且,則的值為()A.1 B.2C.4 D.810.若圓C:上有到的距離為1的點,則實數(shù)m的取值范圍為()A. B.C. D.11.如圖,在三棱錐中,點E在上,滿足,點F為的中點,記分別為,則()A. B.C. D.12.下列說法錯誤的是()A.命題“,”的否定是“,”B.若“”是“或”的充分不必要條件,則實數(shù)m的最大值為2021C.“”是“函數(shù)在內(nèi)有零點”的必要不充分條件D.已知,且,則的最小值為9二、填空題:本題共4小題,每小題5分,共20分。13.將邊長為2的正方形繞其一邊所在的直線旋轉(zhuǎn)一周,所得的圓柱體積為________.14.在2021件產(chǎn)品中有10件次品,任意抽取3件,則抽到次品個數(shù)的數(shù)學期望的值是______.15.曲線在處的切線方程為______16.已知點P為橢圓上的任意一點,點,分別為該橢圓的左、右焦點,則的最大值為______________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的中心在原點,焦點在軸上,離心率等于,它的一個頂點恰好是拋物線的焦點.(1)求橢圓的標準方程;(2)已知直線與橢圓交于、兩點,、是橢圓上位于直線兩側(cè)的動點,且直線的斜率為,求四邊形面積的最大值.18.(12分)已知數(shù)列滿足各項均不為0,,且,.(1)證明:為等差數(shù)列,并求的通項公式;(2)令,,求.19.(12分)如圖,AC是圓O的直徑,B是圓O上異于A,C的一點,平面ABC,點E在棱PB上,且,,.(1)求證:;(2)當三棱錐的體積最大時,求二面角的余弦值.20.(12分)在①,②是與的等比中項,③這三個條件中任選一個,補充在下面的問題中,并解答問題:已知數(shù)列{}的前n項和為,,且滿足___(1)求數(shù)列{}的通項公式;(2)求數(shù)列{}前n項和注:如果選擇多個條件分別解答,按第一個解答計分21.(12分)已知橢圓的焦距為,左、右焦點分別為,為橢圓上一點,且軸,,為垂足,為坐標原點,且(1)求橢圓的標準方程;(2)過橢圓的右焦點的直線(斜率不為)與橢圓交于兩點,為軸正半軸上一點,且,求點的坐標22.(10分)已知函數(shù)在處取得極值確定a的值;若,討論的單調(diào)性
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】由等比數(shù)列的性質(zhì)有,結(jié)合已知求出基本量,再由即可得答案.【詳解】因為,,且q為整數(shù),所以,,即q=2.所以.故選:A2、A【解析】求圓的圓心和半徑,根據(jù)圓的標準方程即可求解﹒【詳解】由題知圓心為,半徑,∴圓方程為﹒故選:A﹒3、D【解析】由題可知:,,,故選;D4、A【解析】根據(jù)三角函數(shù)圖象的變換,由逆向變換即可求解.【詳解】由已知的函數(shù)逆向變換,第一步,向左平移個單位長度,得到的圖象;第二步,圖象上所有點的橫坐標縮短到原來的,縱坐標不變,得到的圖象,即的圖象.故.故選:A5、C【解析】由等差數(shù)列的通項公式計算【詳解】因為,,所以.故選:C【點睛】本題考查等差數(shù)列的通項公式,利用等差數(shù)列通項公式可得,6、C【解析】全稱命題的否定是特稱命題【詳解】根據(jù)全稱命題的否定是特稱命題,所以命題“,均有”的否定為“,使得”故選:C7、B【解析】求出、的值,即可得出雙曲線的漸近線方程.【詳解】由已知可得,,則,因此,該雙曲線的漸近線方程為.故選:B.8、B【解析】由拋物線知識得出準線方程,再由點到焦點的距離等于其到準線的距離求出,從而得出方程.【詳解】由題意知,則準線為,點到焦點的距離等于其到準線的距離,即,∴,則故選:B.9、C【解析】由,可知,使,利用向量的數(shù)乘運算及向量相等即可得解.【詳解】∵,∴,使,得,解得:,所以故選:C【點睛】思路點睛:在解決有關(guān)平行的問題時,通常需要引入?yún)?shù),如本題中已知,引入?yún)?shù),使,轉(zhuǎn)化為方程組求解;本題也可以利用坐標成比例求解,即由,得,求出m,n.10、C【解析】利用圓與圓的位置關(guān)系進行求解即可.【詳解】將圓C的方程化為標準方程得,所以.因為圓C上有到的距離為1的點,所以圓C與圓:有公共點,所以因為,所以,解得,故選:C11、B【解析】利用空間向量加減、數(shù)乘的幾何意義,結(jié)合三棱錐用表示出即可.【詳解】由題設,,,,.故選:B12、C【解析】對于A:用存在量詞否定全稱命題,直接判斷;對于B:根據(jù)充分不必要條件直接判斷;對于C:判斷出“”是“函數(shù)在內(nèi)有零點”的充分不必要條件,即可判斷;對于D:利用基本不等式求最值.【詳解】對于A:用存在量詞否定全稱命題,所以命題“,”的否定是“,”.故A正確;對于B:若“”是“或”的充分不必要條件,所以,即實數(shù)m的最大值為2021.故B正確;對于C:“函數(shù)在內(nèi)有零點”,則,解得:或,所以“”是“函數(shù)在內(nèi)有零點”的充分不必要條件.故C錯誤;對于D:已知,且,所以(當且僅當,即時取等號)故D正確.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】依題意可得圓柱的底面半徑、高,再根據(jù)圓柱的體積公式計算可得;【詳解】解:依題意可得圓柱的底面半徑,高,所以;故答案為:14、【解析】設抽到的次品的個數(shù)為,則,求出對應的概率即得解.【詳解】解:設抽到的次品的個數(shù)為,則,所以所以抽到次品個數(shù)的數(shù)學期望的值是故答案為:15、【解析】求得的導數(shù),可得切線的斜率和切點,由斜截式方程可得切線方程【詳解】解:的導數(shù)為,可得曲線在處的切線斜率為,切點為,即有切線方程為故答案為【點睛】本題考查導數(shù)的運用:求切線方程,考查導數(shù)的幾何意義,直線方程的運用,考查方程思想,屬于基礎題16、【解析】利用正弦定理表示出,再求t,再利用求的最大值即可.【詳解】在中,由正弦定理得,所以,,即求的最大值,也就是求t的最小值,而,即最大時,由橢圓的性質(zhì)知當P為橢圓上頂點時最大,此時,,所以,所以的最大值是1,,所以,故答案為:.【點睛】本題考查橢圓焦點三角形的問題,考查正弦定理的應用.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)根據(jù)離心率的定義以及橢圓與拋物線焦點的關(guān)系,可以求出橢圓方程;(2)根據(jù)題意,可以利用鉛錘底水平高的方法求四邊形APBQ的面積,即是要利用韋達定理算出.【小問1詳解】由題意,即;拋物線,焦點為,故,所以橢圓C的標準方程為:.【小問2詳解】由題意作圖如下:設AB直線的方程為:,并設點,,聯(lián)立方程:得:,∴……①,……②,;由于A,B兩點在直線PQ的兩邊(如上圖),所以,即,將①②帶入得:,解得;即由題意直線PQ的方程為,聯(lián)立方程解得,,∴;將線段PQ看做鉛錘底,A,B兩點的橫坐標之差看做水平高,得四邊形APBQ的面積為:,當且僅當m=0時取最大值,而,所以的最大值為.18、(1)證明見解析,,(2)【解析】(1)根據(jù)題意,結(jié)合遞推公式,易知,即可求證;(2)根據(jù)題意,結(jié)合錯位相減法,即可求解.【小問1詳解】∵,∴,,∴等差數(shù)列,首項為,公差為3.∴,即,.【小問2詳解】根據(jù)題意,得,,①,②①-②得,故.19、(1)證明見解析(2)【解析】(1)由圓的性質(zhì)可得,再由線面垂直的性質(zhì)可得,從而由線面垂直的判定定理可得平面PAB,所以得,再結(jié)合已知條件可得平面PBC,由線面垂直的性質(zhì)可得結(jié)論;(2)由已知條件結(jié)合基本不等式可得當三棱錐的體積最大時,是等腰直角三角形,,從而以OB,OC所在直線分別為x軸,y軸,以過點O且垂直于圓O平面的直線為z軸建立如圖所示的空間直角坐標系,利用空間向量求解.【小問1詳解】證明:因為AC是圓O的直徑,點B是圓O上不與A,C重合的一個動點,所以.因為平面ABC,平面ABC,所以.因為,且AB,平面PAB,所以平面PAB.因為平面PAB,所以.因為,,且BC,平面PBC,所以平面PBC.因為平面PBC,所以.【小問2詳解】解:因為,,所以,所以三棱錐的體積,(當且僅當“”時等號成立).所以當三棱錐的體積最大時,是等腰直角三角形,.所以以OB,OC所在直線分別為x軸,y軸,以過點O且垂直于圓O平面的直線為z軸建立如圖所示的空間直角坐標系,則,,,.因為∽,所以,因為,,所以,所以,.設向量為平面的一個法向量,則即令得,.向量為平面ABC的一個法向量,.因為二面角是銳角,所以二面角的余弦值為.20、(1);(2).【解析】(1)選①,可得數(shù)列為等差數(shù)列,求出,由,可得數(shù)列的通項公式為選②是與的等比中項,可得,由,可得,從而利用累乘法求得數(shù)列的通項公式為選③,由,可得,則數(shù)列為等差數(shù)列,從而求出通項公式(2)由(1)知,求出,利用錯位相減求和法求出小問1詳解】選①.因為,,所以是首項為1,公差為1的等差數(shù)列則,從而當時,,經(jīng)檢驗,當時,也符合上式.所以選②.因為是與的等比中項所以,當時,,兩式相減得,整理得,所以,經(jīng)檢驗,也符合上式,所以選③.由題設,得,兩式相減,得,整理,得,因為.所以,所以是首項為1,公差為2的等差數(shù)列,所以【小問2詳解】由(1)知,,所以,所以,則兩式相減,得,所以21、(1)(2)【解析】(1)利用△∽△構(gòu)造齊次方程,求出離心率,再利用焦距即可求出橢圓方程;(2)將直線方程與橢圓方程聯(lián)立利用韋達定理求出和,利用幾何關(guān)系可知,即可得,將韋達定理代入化簡即可求得點坐標.【小問1詳解】∵橢圓
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024蘋果產(chǎn)業(yè)鏈金融風險防控合作協(xié)議3篇
- 2025年度林地林木種植與生態(tài)修復合同2篇
- 2024食堂食材的采購合同協(xié)議
- 2025賓館客房銷售數(shù)據(jù)共享與處理合同模板3篇
- 2025年度特色美食研發(fā)與酒店合作合同3篇
- 2025年度豬欄工程總承包及生態(tài)環(huán)保合同4篇
- 2025年度智能家居與安防系統(tǒng)一體化合同2篇
- 2025年4-甲基咪唑項目可行性研究報告
- 2025個人收藏品交易合同參考樣本4篇
- PEP小學六年級英語上冊選詞填空專題訓練
- 古建筑修繕項目施工規(guī)程(試行)
- GA 844-2018防砸透明材料
- 化學元素周期表記憶與讀音 元素周期表口訣順口溜
- 非人力資源經(jīng)理的人力資源管理培訓(新版)課件
- MSDS物質(zhì)安全技術(shù)資料-201膠水
- 鉬氧化物還原過程中的物相轉(zhuǎn)變規(guī)律及其動力學機理研究
- (完整word)2019注冊消防工程師繼續(xù)教育三科試習題及答案
- 《調(diào)試件現(xiàn)場管理制度》
- 社區(qū)治理現(xiàn)代化課件
- 代持房屋協(xié)議書
評論
0/150
提交評論