版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆吉林省長春市第一五〇中學(xué)數(shù)學(xué)高三第一學(xué)期期末質(zhì)量檢測試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.如圖是一個幾何體的三視圖,則該幾何體的體積為()A. B. C. D.2.某個小區(qū)住戶共200戶,為調(diào)查小區(qū)居民的7月份用水量,用分層抽樣的方法抽取了50戶進(jìn)行調(diào)查,得到本月的用水量(單位:m3)的頻率分布直方圖如圖所示,則小區(qū)內(nèi)用水量超過15m3的住戶的戶數(shù)為()A.10 B.50 C.60 D.1403.執(zhí)行如圖所示的程序框圖,若輸入,,則輸出的值為()A.0 B.1 C. D.4.已知且,函數(shù),若,則()A.2 B. C. D.5.已知雙曲線的焦距為,過左焦點(diǎn)作斜率為1的直線交雙曲線的右支于點(diǎn),若線段的中點(diǎn)在圓上,則該雙曲線的離心率為()A. B. C. D.6.已知定義在上的函數(shù)的周期為4,當(dāng)時,,則()A. B. C. D.7.第七屆世界軍人運(yùn)動會于2019年10月18日至27日在中國武漢舉行,中國隊(duì)以133金64銀42銅位居金牌榜和獎牌榜的首位.運(yùn)動會期間有甲、乙等五名志愿者被分配到射擊、田徑、籃球、游泳四個運(yùn)動場地提供服務(wù),要求每個人都要被派出去提供服務(wù),且每個場地都要有志愿者服務(wù),則甲和乙恰好在同一組的概率是()A. B. C. D.8.如圖所示,網(wǎng)絡(luò)紙上小正方形的邊長為1,粗線畫出的是某四棱錐的三視圖,則該幾何體的體積為()A.2 B. C.6 D.89.在平行六面體中,M為與的交點(diǎn),若,,則與相等的向量是()A. B. C. D.10.已知集合,B={y∈N|y=x﹣1,x∈A},則A∪B=()A.{﹣1,0,1,2,3} B.{﹣1,0,1,2} C.{0,1,2} D.{x﹣1≤x≤2}11.某校在高一年級進(jìn)行了數(shù)學(xué)競賽(總分100分),下表為高一·一班40名同學(xué)的數(shù)學(xué)競賽成績:555759616864625980889895607388748677799497100999789818060796082959093908580779968如圖的算法框圖中輸入的為上表中的學(xué)生的數(shù)學(xué)競賽成績,運(yùn)行相應(yīng)的程序,輸出,的值,則()A.6 B.8 C.10 D.1212.若復(fù)數(shù)(為虛數(shù)單位),則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),對于任意都有,則的值為______________.14.函數(shù)的極大值為________.15.已知向量,,若,則________.16.已知二面角α﹣l﹣β為60°,在其內(nèi)部取點(diǎn)A,在半平面α,β內(nèi)分別取點(diǎn)B,C.若點(diǎn)A到棱l的距離為1,則△ABC的周長的最小值為_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)若函數(shù)不存在單調(diào)遞減區(qū)間,求實(shí)數(shù)的取值范圍;(2)若函數(shù)的兩個極值點(diǎn)為,,求的最小值.18.(12分)己知的內(nèi)角的對邊分別為.設(shè)(1)求的值;(2)若,且,求的值.19.(12分)如圖,在三棱柱中,是邊長為2的菱形,且,是矩形,,且平面平面,點(diǎn)在線段上移動(不與重合),是的中點(diǎn).(1)當(dāng)四面體的外接球的表面積為時,證明:.平面(2)當(dāng)四面體的體積最大時,求平面與平面所成銳二面角的余弦值.20.(12分)已知是拋物線:的焦點(diǎn),點(diǎn)在上,到軸的距離比小1.(1)求的方程;(2)設(shè)直線與交于另一點(diǎn),為的中點(diǎn),點(diǎn)在軸上,.若,求直線的斜率.21.(12分)已知函數(shù),.(1)求函數(shù)在處的切線方程;(2)當(dāng)時,證明:對任意恒成立.22.(10分)已知數(shù)列滿足(),數(shù)列的前項(xiàng)和,(),且,.(1)求數(shù)列的通項(xiàng)公式:(2)求數(shù)列的通項(xiàng)公式.(3)設(shè),記是數(shù)列的前項(xiàng)和,求正整數(shù),使得對于任意的均有.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】
根據(jù)三視圖可得幾何體為直三棱柱,根據(jù)三視圖中的數(shù)據(jù)直接利用公式可求體積.【詳解】由三視圖可知幾何體為直三棱柱,直觀圖如圖所示:其中,底面為直角三角形,,,高為.∴該幾何體的體積為故選:A.【點(diǎn)睛】本題考查三視圖及棱柱的體積,屬于基礎(chǔ)題.2、C【解析】從頻率分布直方圖可知,用水量超過15m3的住戶的頻率為,即分層抽樣的50戶中有0.3×50=15戶住戶的用水量超過15立方米所以小區(qū)內(nèi)用水量超過15立方米的住戶戶數(shù)為,故選C3、A【解析】
根據(jù)輸入的值大小關(guān)系,代入程序框圖即可求解.【詳解】輸入,,因?yàn)?,所以由程序框圖知,輸出的值為.故選:A【點(diǎn)睛】本題考查了對數(shù)式大小比較,條件程序框圖的簡單應(yīng)用,屬于基礎(chǔ)題.4、C【解析】
根據(jù)分段函數(shù)的解析式,知當(dāng)時,且,由于,則,即可求出.【詳解】由題意知:當(dāng)時,且由于,則可知:,則,∴,則,則.即.故選:C.【點(diǎn)睛】本題考查分段函數(shù)的應(yīng)用,由分段函數(shù)解析式求自變量.5、C【解析】
設(shè)線段的中點(diǎn)為,判斷出點(diǎn)的位置,結(jié)合雙曲線的定義,求得雙曲線的離心率.【詳解】設(shè)線段的中點(diǎn)為,由于直線的斜率是,而圓,所以.由于是線段的中點(diǎn),所以,而,根據(jù)雙曲線的定義可知,即,即.故選:C【點(diǎn)睛】本小題主要考查雙曲線的定義和離心率的求法,考查直線和圓的位置關(guān)系,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于中檔題.6、A【解析】
因?yàn)榻o出的解析式只適用于,所以利用周期性,將轉(zhuǎn)化為,再與一起代入解析式,利用對數(shù)恒等式和對數(shù)的運(yùn)算性質(zhì),即可求得結(jié)果.【詳解】定義在上的函數(shù)的周期為4,當(dāng)時,,,,.故選:A.【點(diǎn)睛】本題考查了利用函數(shù)的周期性求函數(shù)值,對數(shù)的運(yùn)算性質(zhì),屬于中檔題.7、A【解析】
根據(jù)題意,五人分成四組,先求出兩人組成一組的所有可能的分組種數(shù),再將甲乙組成一組的情況,即可求出概率.【詳解】五人分成四組,先選出兩人組成一組,剩下的人各自成一組,所有可能的分組共有種,甲和乙分在同一組,則其余三人各自成一組,只有一種分法,與場地?zé)o關(guān),故甲和乙恰好在同一組的概率是.故選:A.【點(diǎn)睛】本題考查組合的應(yīng)用和概率的計算,屬于基礎(chǔ)題.8、A【解析】
先由三視圖確定該四棱錐的底面形狀,以及四棱錐的高,再由體積公式即可求出結(jié)果.【詳解】由三視圖可知,該四棱錐為斜著放置的四棱錐,四棱錐的底面為直角梯形,上底為1,下底為2,高為2,四棱錐的高為2,所以該四棱錐的體積為.故選A【點(diǎn)睛】本題主要考查幾何的三視圖,由幾何體的三視圖先還原幾何體,再由體積公式即可求解,屬于??碱}型.9、D【解析】
根據(jù)空間向量的線性運(yùn)算,用作基底表示即可得解.【詳解】根據(jù)空間向量的線性運(yùn)算可知因?yàn)?,則即,故選:D.【點(diǎn)睛】本題考查了空間向量的線性運(yùn)算,用基底表示向量,屬于基礎(chǔ)題.10、A【解析】
解出集合A和B即可求得兩個集合的并集.【詳解】∵集合{x∈Z|﹣2<x≤3}={﹣1,0,1,2,3},B={y∈N|y=x﹣1,x∈A}={﹣2,﹣1,0,1,2},∴A∪B={﹣2,﹣1,0,1,2,3}.故選:A.【點(diǎn)睛】此題考查求集合的并集,關(guān)鍵在于準(zhǔn)確求解不等式,根據(jù)描述法表示的集合,準(zhǔn)確寫出集合中的元素.11、D【解析】
根據(jù)程序框圖判斷出的意義,由此求得的值,進(jìn)而求得的值.【詳解】由題意可得的取值為成績大于等于90的人數(shù),的取值為成績大于等于60且小于90的人數(shù),故,,所以.故選:D【點(diǎn)睛】本小題考查利用程序框圖計算統(tǒng)計量等基礎(chǔ)知識;考查運(yùn)算求解能力,邏輯推理能力和數(shù)學(xué)應(yīng)用意識.12、B【解析】
根據(jù)復(fù)數(shù)的除法法則計算,由共軛復(fù)數(shù)的概念寫出.【詳解】,,故選:B【點(diǎn)睛】本題主要考查了復(fù)數(shù)的除法計算,共軛復(fù)數(shù)的概念,屬于容易題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由條件得到函數(shù)的對稱性,從而得到結(jié)果【詳解】∵f=f,∴x=是函數(shù)f(x)=2sin(ωx+φ)的一條對稱軸.∴f=±2.【點(diǎn)睛】本題考查了正弦型三角函數(shù)的對稱性,注意對稱軸必過最高點(diǎn)或最低點(diǎn),屬于基礎(chǔ)題.14、【解析】
對函數(shù)求導(dǎo),根據(jù)函數(shù)單調(diào)性,即可容易求得函數(shù)的極大值.【詳解】依題意,得.所以當(dāng)時,;當(dāng)時,.所以當(dāng)時,函數(shù)有極大值.故答案為:.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的性質(zhì),考查運(yùn)算求解能力以及化歸轉(zhuǎn)化思想,屬基礎(chǔ)題.15、10【解析】
根據(jù)垂直得到,代入計算得到答案.【詳解】,則,解得,故,故.故答案為:.【點(diǎn)睛】本題考查了根據(jù)向量垂直求參數(shù),向量模,意在考查學(xué)生的計算能力.16、【解析】
作A關(guān)于平面α和β的對稱點(diǎn)M,N,交α和β與D,E,連接MN,AM,AN,DE,根據(jù)對稱性三角形ADC的周長為AB+AC+BC=MB+BC+CN,當(dāng)四點(diǎn)共線時長度最短,結(jié)合對稱性和余弦定理求解.【詳解】作A關(guān)于平面α和β的對稱點(diǎn)M,N,交α和β與D,E,連接MN,AM,AN,DE,根據(jù)對稱性三角形ABC的周長為AB+AC+BC=MB+BC+CN,當(dāng)M,B,C,N共線時,周長最小為MN設(shè)平面ADE交l于,O,連接OD,OE,顯然OD⊥l,OE⊥l,∠DOE=60°,∠MOA+∠AON=240°,OA=1,∠MON=120°,且OM=ON=OA=1,根據(jù)余弦定理,故MN2=1+1﹣2×1×1×cos120°=3,故MN.故答案為:.【點(diǎn)睛】此題考查求空間三角形邊長的最值,關(guān)鍵在于根據(jù)幾何性質(zhì)找出對稱關(guān)系,結(jié)合解三角形知識求解.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】分析:(1)先求導(dǎo),再令在上恒成立,得到上恒成立,利用基本不等式得到m的取值范圍.(2)先由得到,再求得,再構(gòu)造函數(shù)再利用導(dǎo)數(shù)求其最小值.詳解:(1)由函數(shù)有意義,則由且不存在單調(diào)遞減區(qū)間,則在上恒成立,上恒成立(2)由知,令,即由有兩個極值點(diǎn)故為方程的兩根,,,則由由,則上單調(diào)遞減,即由知綜上所述,的最小值為.點(diǎn)睛:(1)本題主要考查利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間和極值,考查利用導(dǎo)數(shù)求函數(shù)的最值,意在考查學(xué)生對這些知識的掌握水平和分析推理能力.(2)本題的難點(diǎn)有兩個,其一是求出,其二是構(gòu)造函數(shù)再利用導(dǎo)數(shù)求其最小值.18、(1)(2)【解析】
(1)由正弦定理將,轉(zhuǎn)化,即,由余弦定理求得,再由平方關(guān)系得再求解.(2)由,得,結(jié)合再求解.【詳解】(1)由正弦定理,得,即,則,而,又,解得,故.(2)因?yàn)?,則,因?yàn)?,故,故,解得,故,則.【點(diǎn)睛】本題考查正弦定理、余弦定理、三角形的面積公式,考查運(yùn)算求解能力以及化歸與轉(zhuǎn)化思想,屬于中檔題.19、(1)證明見解析(2)【解析】
(1)由題意,先求得為的中點(diǎn),再證明平面平面,進(jìn)而可得結(jié)論;(2)由題意,當(dāng)點(diǎn)位于點(diǎn)時,四面體的體積最大,再建立空間直角坐標(biāo)系,利用空間向量運(yùn)算即可.【詳解】(1)證明:當(dāng)四面體的外接球的表面積為時.則其外接球的半徑為.因?yàn)闀r邊長為2的菱形,是矩形.,且平面平面.則,.則為四面體外接球的直徑.所以,即.由題意,,,所以.因?yàn)椋詾榈闹悬c(diǎn).記的中點(diǎn)為,連接,.則,,,所以平面平面.因?yàn)槠矫妫云矫?(2)由題意,平面,則三棱錐的高不變.當(dāng)四面體的體積最大時,的面積最大.所以當(dāng)點(diǎn)位于點(diǎn)時,四面體的體積最大.以點(diǎn)為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系.則,,,,.所以,,,.設(shè)平面的法向量為.則令,得.設(shè)平面的一個法向量為.則令,得.設(shè)平面與平面所成銳二面角是,則.所以當(dāng)四面體的體積最大時,平面與平面所成銳二面角的余弦值為.【點(diǎn)睛】本題考查平面與平面的平行、線面平行,考查平面與平面所成銳二面角的余弦值,正確運(yùn)用平面與平面的平行、線面平行的判定,利用好空間向量是關(guān)鍵,屬于基礎(chǔ)題.20、(1)(2)【解析】
(1)由拋物線定義可知,解得,故拋物線的方程為;(2)設(shè)直線:,聯(lián)立,利用韋達(dá)定理算出的中點(diǎn),又,所以直線的方程為,求出,利用求解即可.【詳解】(1)設(shè)的準(zhǔn)線為,過作于,則由拋物線定義,得,因?yàn)榈降木嚯x比到軸的距離大1,所以,解得,所以的方程為(2)由題意,設(shè)直線方程為,由消去,得,設(shè),,則,所以,又因?yàn)闉榈闹悬c(diǎn),點(diǎn)的坐標(biāo)為,直線的方程為,令,得,點(diǎn)的坐標(biāo)為,所以,解得,所以直線的斜率為.【點(diǎn)睛】本題主要考查拋物線的定義,直線與拋物線的位置關(guān)系等基礎(chǔ)知識,考查學(xué)生的運(yùn)算求解能力.涉及拋物線的弦的中點(diǎn),斜率問題時,可采用韋達(dá)定理或“點(diǎn)差法”求解.21、(1)(2)見解析【解析】
(1)因?yàn)?,可得,即可求得答案;?)要證對任意恒成立,即證對任意恒成立.設(shè),,當(dāng)時,,即可求得答案.【詳解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 虛擬貨幣交易機(jī)制創(chuàng)新-洞察分析
- 虛擬現(xiàn)實(shí)惡意軟件檢測-洞察分析
- 郵政快遞業(yè)競爭態(tài)勢-洞察分析
- 2024年05月江蘇中國建設(shè)銀行建行大學(xué)華東學(xué)院“建習(xí)生”暑期實(shí)習(xí)生招考筆試歷年參考題庫附帶答案詳解
- 《離散數(shù)學(xué)半群與群》課件
- 農(nóng)業(yè)大棚轉(zhuǎn)讓合同(2篇)
- MySQL數(shù)據(jù)庫教程課件
- 2024年05月北京中信銀行機(jī)構(gòu)客戶部社會招考(511)筆試歷年參考題庫附帶答案詳解
- 2025年粵教新版選擇性必修1歷史上冊月考試卷含答案
- 《封裝工藝流程》課件
- 手術(shù)中側(cè)臥位體位擺放護(hù)理課件
- 測繪法規(guī)與管理(第2版)全套教學(xué)課件
- 湖北省天門市2023-2024學(xué)年七年級上學(xué)期期末考試語文試題(含答案)
- 智能化施工管理平臺
- 2024年國家能源集團(tuán)江蘇電力有限公司招聘筆試參考題庫附帶答案詳解
- 江西省九江市2023-2024學(xué)年部編版九年級上學(xué)期期末歷史試題(含答案)
- 山東省濟(jì)南市2023-2024學(xué)年高三上學(xué)期期末學(xué)習(xí)質(zhì)量檢測物理試題(原卷版)
- 2024年新華人壽保險股份有限公司招聘筆試參考題庫含答案解析
- 能源托管服務(wù)投標(biāo)方案(技術(shù)方案)
- 乳頭混淆疾病演示課件
- 高速公路涉路施工許可技術(shù)審查指南(一)
評論
0/150
提交評論