版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
河南平頂山許昌濟源2025屆數(shù)學高二上期末學業(yè)水平測試模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.焦點坐標為(1,0)拋物線的標準方程是()A.y2=-4x B.y2=4xC.x2=-4y D.x2=4y2.已知,,若,則()A.6 B.11C.12 D.223.已知點在拋物線的準線上,則該拋物線的焦點坐標是()A. B.C. D.4.執(zhí)行如圖所示的流程圖,則輸出k的值為()A.3 B.4C.5 D.25.已知四面體,所有棱長均為2,點E,F(xiàn)分別為棱AB,CD的中點,則()A.1 B.2C.-1 D.-26.當時,不等式恒成立,則實數(shù)的取值范圍為()A. B.C. D.7.已知雙曲線,則雙曲線的離心率為()A. B.C. D.8.執(zhí)行如圖的程序框圖,輸出的S的值為()A. B.0C.1 D.29.有下列三個命題:①“若,則互為相反數(shù)”的逆命題;②“若,則”的逆否命題;③“若,則”的否命題.其中真命題的個數(shù)是A.0 B.1C.2 D.310.、是橢圓的左、右焦點,點在橢圓上,,過作的角平分線的垂線,垂足為,則的長為A.1 B.2C.3 D.411.兩條平行直線與之間的距離為()A. B.C. D.12.設,則“”是“直線與直線平行”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.設等差數(shù)列的前項和為,且,,則__________.14.已知雙曲線,(,)的左右焦點分別為,過的直線與圓相切,與雙曲線在第四象限交于一點,且有軸,則直線的斜率是___________,雙曲線的漸近線方程為___________.15.已知函數(shù)則的值為.____16.已知直線l是拋物線()的準線,半徑為的圓過拋物線的頂點O和焦點F,且與l相切,則拋物線C的方程為___________;若A為C上一點,l與C的對稱軸交于點B,在中,,則的值為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線y2=8x.(1)求出該拋物線的頂點、焦點、準線、對稱軸、變量x的范圍;(2)以坐標原點O為頂點,作拋物線的內接等腰三角形OAB,|OA|=|OB|,若焦點F是△OAB的重心,求△OAB的周長18.(12分)已知三角形內角所對的邊分別為,且C為鈍角.(1)求cosA;(2)若,,求三角形的面積.19.(12分)某班主任對全班名學生進行了作業(yè)量多少與手機網游的調查,數(shù)據(jù)如下表:認為作業(yè)多認為作業(yè)不多總數(shù)喜歡手機網游不喜歡手機網游總數(shù)(1)若隨機地抽問這個班的一名學生,分別求事件“認為作業(yè)不多”和事件“喜歡手機網游且認為作業(yè)多”的概率;(2)若在“認為作業(yè)多”的學生中已經用分層抽樣的方法選取了名學生.現(xiàn)要從這名學生中任取名學生了解情況,求其中恰有名“不喜歡手機網游”的學生的概率20.(12分)如圖所示在多面體中,平面,四邊形是正方形,,,,.(1)求證:直線平面;(2)求平面與平面夾角的余弦值.21.(12分)如圖,在三棱錐中,側面PAB是邊長為4的正三角形且與底面ABC垂直,點D,E,F(xiàn),H分別是棱PA,AB,BC,PC的中點(1)若點G在棱BC上,且BG=3GC,求證:平面∥平面DHG;(2)若AC=2,,求二面角的余弦值22.(10分)已知函數(shù),曲線在點處的切線與直線垂直(其中為自然對數(shù)的底數(shù))(1)求的值;(2)是否存在常數(shù),使得對于定義域內的任意,恒成立?若存在,求出的值;若不存在,請說明理由
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】由題意設拋物線方程為y2=2px(p>0),結合焦點坐標求得p,則答案可求【詳解】由題意可設拋物線方程為y2=2px(p>0),由焦點坐標為(1,0),得,即p=2∴拋物的標準方程是y2=4x故選B【點睛】本題主要考查了拋物線的標準方程及其簡單的幾何性質的應用,其中解答中熟記拋物線的幾何性質是解答的關鍵,著重考查了推理與運算能力,屬于基礎題2、C【解析】根據(jù)遞推關系式計算即可求出結果.【詳解】因為,,,則,,,故選:C.3、C【解析】首先表示出拋物線的準線,根據(jù)點在拋物線的準線上,即可求出參數(shù),即可求出拋物線的焦點.【詳解】解:拋物線的準線為因為在拋物線的準線上故其焦點為故選:【點睛】本題考查拋物線的簡單幾何性質,屬于基礎題.4、B【解析】根據(jù)程序框圖運行程序,直到滿足,輸出結果即可.【詳解】按照程序框圖運行程序,輸入,則,,不滿足,循環(huán);,,不滿足,循環(huán);,,不滿足,循環(huán);,,滿足,輸出結果:故選:B.5、D【解析】在四面體中,取定一組基底向量,表示出,,再借助空間向量數(shù)量積計算作答.【詳解】四面體所有棱長均為2,則向量不共面,兩兩夾角都為,則,因點E,F(xiàn)分別為棱AB,CD的中點,則,,,所以.故選:D6、A【解析】設,對實數(shù)的取值進行分類討論,求得,解不等式,綜合可得出實數(shù)的取值范圍.【詳解】設,其中.①當時,即當時,函數(shù)在區(qū)間上單調遞增,則,解得,此時不存在;②當時,,解得;③當時,即當時,函數(shù)在區(qū)間上單調遞減,則,解得,此時不存在.綜上所述,實數(shù)的取值范圍是.故選:A.7、D【解析】由雙曲線的方程及雙曲線的離心率即可求解.【詳解】解:因為雙曲線,所以,所以雙曲線的離心率,故選:D.8、A【解析】直接求出的值即可.【詳解】解:由題得,程序框圖就是求,由于三角函數(shù)的最小正周期為,,,所以.故選:A9、B【解析】①寫出命題的逆命題,可以進行判斷為真命題;②原命題和逆否命題真假性相同,而通過舉例得到原命題為假,故逆否命題也為假;③寫出命題的否命題,通過舉出反例得到否命題為假【詳解】①“若,則互為相反數(shù)”的逆命題是,若互為相反數(shù),則;是真命題;②“若,則”,當a=-1,b=-2,時不滿足,故原命題為假命題,而原命題和逆否命題真假性相同,故得到命題為假;③“若,則”的否命題是若,則,舉例當x=5時,不滿足不等式,故得到否命題是假命題;故答案為B.【點睛】這個題目考查了命題真假的判斷,涉及命題的否定,命題的否命題,逆否命題,逆命題的相關概念,注意原命題和逆否命題的真假性相同,故需要判斷逆否命題的真假時,只需要判斷原命題的真假10、A【解析】延長交延長線于N,則選:A.【點睛】涉及兩焦點問題,往往利用橢圓定義進行轉化研究,而角平分線性質可轉化到焦半徑問題,兩者切入點為橢圓定義.11、D【解析】由已知有,所以直線可化為,利用兩平行直線距離公式有,選D.點睛:本題主要考查兩平行直線間的距離公式,屬于易錯題.在用兩平行直線距離公式時,兩直線中的系數(shù)要相同,不然不能用此公式計算12、A【解析】根據(jù)兩直線平行的充要條件求出a的值,然后可判斷.【詳解】當時,,所以兩直線平行;若兩直線平行,則且,解得或,所以,“”是“直線與直線平行”的充分不必要條件.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù),利用等差數(shù)列前項和公式,列方程求出,再由,能求出【詳解】等差數(shù)列的前項和為,且,,,解得,,,解得,故答案為:1014、①.②.【解析】由題意,不妨設直線與圓相切于點,由可得,代入雙曲線方程,可得,因此,即得解【詳解】如圖所示,不妨設直線與圓相切于點,,由于代入進入,可得,漸近線方程為故答案為:,15、-1【解析】詳解】試題分析:由題意,得,所以,解得,所以考點:導數(shù)的運算16、①.②.【解析】(1)由題意得:圓的圓心橫坐標為,半徑為,列方程,即可得到答案;(2)由正弦定理得,從而求得直線的方程,求出點的坐標,即可得到答案;【詳解】由題意得:圓的圓心橫坐標為,半徑為,,拋物線C的方程為;設到準線的距離為,,,,,代入,解得:,,,故答案為:;三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)2+4.【解析】(1)由拋物線的簡單幾何性質易得結果;(2)由|OA|=|OB|可知AB⊥x軸,又焦點F是△OAB的重心,則|OF|=|OM|=2.設A(3,m),代入y2=8x即可得到△OAB的周長【詳解】(1)拋物線y2=8x的頂點、焦點、準線、對稱軸、變量x的范圍分別為(0,0),(2,0),x=-2,x軸,x≥0.(2)如圖所示.由|OA|=|OB|可知AB⊥x軸,垂足為點M,又焦點F是△OAB的重心,則|OF|=|OM|.因為F(2,0),所以|OM|=|OF|=3.所以M(3,0).故設A(3,m),代入y2=8x得m2=24.所以m=2或m=-2.所以A(3,2),B(3,-2)所以|OA|=|OB|=.所以△OAB的周長為2+4.【點睛】本題考查了拋物線簡單性質的應用,解題關鍵利用好三角形重心的性質,屬于中檔題.18、(1)(2)【解析】(1)由正弦定理邊化角,可求得角的正弦,由同角關系結合條件可得答案.(2)由(1),由余弦定理,求出邊的長,進一步求得面積【小問1詳解】因為,由正弦定理得因為,所以.因為角為鈍角,所以角為銳角,所以小問2詳解】由(1),由余弦定理,得,所以,解得或,不合題意舍去,故的面積為=19、(1)事件“認為作業(yè)不多”和事件“喜歡手機網游且認為作業(yè)多”的概率分別為、;(2).【解析】(1)利用古典概型的概率公式可求得所求事件的概率;(2)確定所選的名學生中,“不喜歡手機網游”和“喜歡手機網游”的學生人數(shù),加以標記,列舉出所有的基本事件,確定所求事件所包含的基本事件,利用古典概型的概率公式可求得所求事件的概率.【小問1詳解】解:由題意可知,全班名學生中,“認為作業(yè)不多”的學生人數(shù)為人,“喜歡手機網游且認為作業(yè)多”的學生人數(shù)為人,因此,隨機地抽問這個班的一名學生,事件“認為作業(yè)不多”的概率為,事件“喜歡手機網游且認為作業(yè)多”的概率為.【小問2詳解】解:在“認為作業(yè)多”的學生中已經用分層抽樣的方法選取了名學生,這名學生中“不喜歡手機網游”的學生人數(shù)為,記為,名學生中“喜歡手機網游”的學生人數(shù)為,分別記為、、、,從這名學生中任取名學生,所有的基本事件有:、、、、、、、、、,共種,其中,事件“恰有名“不喜歡手機網游”的學生”包含的基本事件有:、、、,共種,故所求概率為.20、(1)證明見解析;(2).【解析】(1)以點為坐標原點,分別以、、為、、軸建立空間直角坐標系,利用空間向量法可證明出直線平面;(2)利用空間向量法可求得平面與平面夾角的余弦值.【小問1詳解】證明:因為平面,,以點為坐標原點,分別以、、為、、軸建立空間直角坐標系,則、、、、、,所以,,,設平面的法向量為,依題意有,即,令,可得,,則,平面,因此,平面.【小問2詳解】解:由題,,設平面的法向量為,依題意有,即,取,可得,,因此,平面與平面的夾角余弦值為.21、(1)證明見解析;(2).【解析】(1)由中位線的性質可得、、,再由線面平行的判定可證平面PEF、平面PEF,最后根據(jù)面面平行的判定證明結論.(2)應用勾股定理、等邊三角形的性質、面面和線面垂直的性質可證、、兩兩垂直,構建空間直角坐標系,求面BPC、面PCA的法向量,再應用空間向量夾角的坐標表示求二面角的余弦值.【小問1詳解】因為D,H分別是PA,PC的中點,所以因為E,F(xiàn)分別是AB,BC的中點,所以,綜上,,又平面PEF,平面PEF,所以平面PEF由題意,G是CF的中點,又H是PC的中點,所以,又平面PEF,平面PEF,所以平面PEF由,HG,平面DHG,所以平面平面DHG【小問2詳解】在△ABC中,AB=4,AC=2,,所以,所以,又,則因為△PAB為等邊三角形,點E為AB的中點,所以,又平面平面ABC,平面平面ABC=AB,所以平面ABC,面ABC,故綜上,以E為坐標原點,以EB,EF,EP所在直線分別為x,y,z軸,建立空間直角坐標系,如圖所示,有,,,,則
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025安拆分公司合同管理制度
- 二零二五年度解除勞動合同經濟補償金核算與員工培訓協(xié)議3篇
- 二零二五年度股權協(xié)議書大全:股權投資風險控制協(xié)議3篇
- 二零二五年度子女對父母生活照料與醫(yī)療看護綜合服務協(xié)議2篇
- 2025年度連鎖藥店品牌授權與轉讓協(xié)議書3篇
- 二零二五年度新型醫(yī)療設備價格保密合同3篇
- 2025年度股東退出與知識產權轉讓協(xié)議2篇
- 二零二五年度農業(yè)科技企業(yè)員工勞動合同規(guī)范模板2篇
- 2025年度智能車庫租賃合同模板(含車位租賃與停車場環(huán)境改善)3篇
- 2025年度新能源發(fā)電項目轉讓合同2篇
- 康復治療技術歷年真題單選題100道及答案
- 2024年領導干部和公務員法律法規(guī)應知應會知識考試題庫
- 《建筑工程施工許可管理辦法》2021年9月28日修訂
- 漢字文化解密學習通超星期末考試答案章節(jié)答案2024年
- 【格力電器應收賬款管理存在的問題及優(yōu)化建議探析(論文)12000字】
- 安徽省合肥市2023-2024學年七年級上學期期末數(shù)學試題(含答案)3
- (完整版)《美國文學》期末考試試卷(A卷)
- 透鏡及其應用??家族e陷阱分析-2024年中考物理考試易錯題
- Unit 4 Plants around us C (教學設計)-2024-2025學年人教PEP版(2024)英語三年級上冊
- 管徑的選擇和管道壓力降的計算
- 機動車商業(yè)保險條款(2020版)
評論
0/150
提交評論