![數(shù)字圖像處理 小波和多分辨率處理_第1頁](http://file4.renrendoc.com/view12/M01/2C/04/wKhkGWcVtMGARD1HAAFdTPSi0Q0541.jpg)
![數(shù)字圖像處理 小波和多分辨率處理_第2頁](http://file4.renrendoc.com/view12/M01/2C/04/wKhkGWcVtMGARD1HAAFdTPSi0Q05412.jpg)
![數(shù)字圖像處理 小波和多分辨率處理_第3頁](http://file4.renrendoc.com/view12/M01/2C/04/wKhkGWcVtMGARD1HAAFdTPSi0Q05413.jpg)
![數(shù)字圖像處理 小波和多分辨率處理_第4頁](http://file4.renrendoc.com/view12/M01/2C/04/wKhkGWcVtMGARD1HAAFdTPSi0Q05414.jpg)
![數(shù)字圖像處理 小波和多分辨率處理_第5頁](http://file4.renrendoc.com/view12/M01/2C/04/wKhkGWcVtMGARD1HAAFdTPSi0Q05415.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
DigitalImageProcessingWaveletandMultiresolutionProcessing
MultiresolutionAnalysisManysignalsorimagescontainfeaturesatvariouslevelsofdetail(i.e.,scales). Smallsizeobjectsshouldbeexaminedatahigh
resolution.Largesizeobjectsshouldbeexaminedatalow
resolution.MultiresolutionAnalysis(cont’d)Localimagestatisticsarequitedifferentfromglobalimagestatistics.Modelingentireimageisdifficultorimpossible.Needtoanalyzeimagesatmultiplelevelsofdetail.Transform:AmathematicaloperationthattakesafunctionorsequenceandmapsitintoanotheroneTransformsaregoodthingsbecause…Thetransformofafunctionmaygiveadditional/hiddeninformationabouttheoriginalfunction,whichmaynotbeavailable/obviousotherwiseThetransformofanequationmaybeeasiertosolvethantheoriginalequationThetransformofafunction/sequencemayrequirelessstorage,henceprovidedatacompression/reductionAnoperationmaybeeasiertoapplyonthetransformedfunction,ratherthantheoriginalfunction(recallconvolution)Introduction(RobiPolikar,RowanUniversity)
WhatisaTransformandWhydoWeNeedOne?Mostusefultransformsare:Linear:wecanpulloutconstants,andapplysuperpositionOne-to-one:differentfunctionshavedifferenttransformsInvertible:foreachtransformT,thereisaninversetransformT-1usingwhichtheoriginalfunctionfcanberecovered(kindof–sortoftheundobutton…)Continuoustransform:mapfunctionstofunctionsDiscretetransform:mapsequencestosequencesTfFT-1fIntroduction
PropertiesofTransformsComplexfunctionrepresentationthroughsimplebuildingblocksCompressedrepresentationthroughusingonlyafewblocks(calledbasisfunctions/kernels)Sinusoidsasbuildingblocks:FouriertransformFrequencydomainrepresentationofthefunctionIntroduction
WhatDoesaTransformLookLike?FourierseriesContinuousFouriertransformLaplacetransformDiscreteFouriertransformZ-transformIntroduction
WhatTransformsareAvailable?JeanB.JosephFourier(1768-1830)“Anarbitraryfunction,continuousorwithdiscontinuities,definedinafiniteintervalbyanarbitrarilycapriciousgraphcanalwaysbeexpressedasasumofsinusoids” J.B.J.FourierDecember,21,1807Introduction
FourierWho…?RecallthatFTusescomplexexponentials(sinusoids)asbuildingblocks.Foreachfrequencyofcomplexexponential,thesinusoidatthatfrequencyiscomparedtothesignal.Ifthesignalconsistsofthatfrequency,thecorrelationishighlargeFTcoefficients.Ifthesignaldoesnothaveanyspectralcomponentatafrequency,thecorrelationatthatfrequencyislow/zero,small/zeroFTcoefficient.Introduction
HowDoesFTWorkAnyway?Introduction
FTatWorkFFFIntroduction
FTatWorkFIntroduction
FTatWorkComplexexponentials(sinusoids)asbasisfunctions:FAnultrasonicA-scanusing1.5MHztransducer,sampledat10MHzIntroduction
FTatWorkFTidentifiesallspectralcomponentspresentinthesignal,howeveritdoesnotprovideanyinformationregardingthetemporal(time)localizationofthesecomponents.Why?StationarysignalsconsistofspectralcomponentsthatdonotchangeintimeallspectralcomponentsexistatalltimesnoneedtoknowanytimeinformationFTworkswellforstationarysignalsHowever,non-stationarysignalsconsistsoftimevaryingspectralcomponentsHowdowefindoutwhichspectralcomponentappearswhen?FTonlyprovideswhatspectralcomponentsexist
,notwhereintimetheyarelocated.NeedsomeotherwaystodeterminetimelocalizationofspectralcomponentsIntroduction
StationaryandNon-stationarySignalsStationarysignals’spectralcharacteristicsdonotchangewithtimeNon-stationarysignalshavetimevaryingspectraConcatenationIntroduction
StationaryandNon-stationarySignals5Hz25Hz50HzPerfectknowledgeofwhatfrequenciesexist,butnoinformationaboutwherethesefrequenciesarelocatedintimeIntroduction
Non-stationarySignalsComplexexponentialsstretchouttoinfinityintimeTheyanalyzethesignalglobally,notlocallyHence,FTcanonlytellwhatfrequenciesexistintheentiresignal,butcannottell,atwhattimeinstancesthesefrequenciesoccurInordertoobtaintimelocalization
ofthespectralcomponents,thesignalneedtobeanalyzedlocally,BUTHOW?Introduction
FTShortcomingsChooseawindowfunctionoffinitelengthPutthewindowontopofthesignalatt=0TruncatethesignalusingthiswindowComputetheFTofthetruncatedsignal,save.SlidethewindowtotherightbyasmallamountGotostep3,untilwindowreachestheendofthesignalForeachtimelocationwherethewindowiscentered,weobtainadifferentFTHence,eachFTprovidesthespectralinformationofaseparatetime-sliceofthesignal,providingsimultaneoustimeandfrequencyinformationIntroduction
ShortTimeFourierTransform(STFT)Introduction
ShortTimeFourierTransform(STFT)STFTofsignalx(t):Computedforeachwindowcenteredatt=t’TimeparameterFrequencyparameterSignaltobeanalyzedWindowingfunctionWindowingfunctioncenteredatt=t’FTKernel(basisfunction)Introduction
ShortTimeFourierTransform(STFT)0100200300-1.5-1-0.500.510100200300-1.5-1-0.500.510100200300-1.5-1-0.500.510100200300-1.5-1-0.500.51WindowedsinusoidallowsFTtobecomputedonlythroughthesupportofthewindowingfunctionIntroduction
STFTatWorkIntroduction
STFT300Hz200Hz100Hz50HzSTFTprovidesthetimeinformationbycomputingadifferentFTsforconsecutivetimeintervals,andthenputtingthemtogetherTime-FrequencyRepresentation(TFR)Maps1-Dtimedomainsignalsto2-Dtime-frequencysignalsConsecutivetimeintervalsofthesignalareobtainedbytruncatingthesignalusingaslidingwindowingfunctionHowtochoosethewindowingfunction?Whatshape?Rectangular,Gaussian,Elliptic…?Howwide?Introduction
STFTTwoextremecases:W(t)infinitelylong:
STFTturnsintoFT,providingexcellentfrequencyinformation(goodfrequencyresolution),butnotimeinformationW(t)infinitelyshort:
STFTthengivesthetimesignalback,withaphasefactor.Excellenttimeinformation(goodtimeresolution),butnofrequencyinformationIntroduction
SelectionofSTFTWindowWideanalysiswindowpoortimeresolution,goodfrequencyresolutionNarrowanalysiswindowgoodtimeresolution,poorfrequencyresolutionOncethewindowischosen,theresolutionissetforbothtimeandfrequency.Timeresolution:HowwelltwospikesintimecanbeseparatedfromeachotherinthetransformdomainFrequencyresolution:HowwelltwospectralcomponentscanbeseparatedfromeachotherinthetransformdomainBothtimeandfrequencyresolutionscannotbearbitrarilyhigh!!!
Wecannotpreciselyknowatwhattimeinstanceafrequencycomponentislocated.WecanonlyknowwhatintervaloffrequenciesarepresentinwhichtimeintervalsIntroduction
HeisenbergUncertaintyPrincipleIntroduction
STFTGaussianwindowfunction:a=0.01a=0.0001a=0.00001OvercomesthepresetresolutionproblemoftheSTFTbyusingavariablelengthwindowAnalysiswindowsofdifferentlengthsareusedfordifferentfrequencies:AnalysisofhighfrequenciesUsenarrowerwindowsforbettertimeresolutionAnalysisoflowfrequenciesUsewiderwindowsforbetterfrequencyresolutionThisworkswell,ifthesignaltobeanalyzedmainlyconsistsofslowlyvaryingcharacteristicswithoccasionalshorthighfrequencybursts.Heisenbergprinciplestillholds!!!Thefunctionusedtowindowthesignaliscalledthewavelet
Introduction
WaveletTransformContinuouswavelettransformofthesignalx(t)usingtheanalysiswavelet(.)Translationparameter,measureoftimeScaleparameter,measureoffrequencyThemotherwavelet.Allkernelsareobtainedbytranslating(shifting)and/orscalingthemotherwaveletAnormalizationconstantSignaltobeanalyzedScale=1/frequencyIntroduction
WaveletTransformHighfrequency(smallscale)Lowfrequency(largescale)Introduction
WTatWorkIntroduction
WTatWorkIntroduction
WTatWorkIntroduction
WTatWorkIntroduction
TimeandFrequencyResolutionBackgroundImagePyramidsComputeareduced-resolutionapproximationoftheinputimageFiltering(Averaging,Gaussian)Down-samplingUp-sampletheoutputofthepreviousbyafactor2Computethedifferencebetweenthepredictionofstep2andtheinputto
Step1.ImagePyramidsImagePyramidsInMulti-resolutionAnalysis(MRA),aScalingFunctionisusedtocreateaseriesofapproximationsofafunctionorimage,eachdifferingbyafactor2fromitsnearestneighboringapproximations.Additionalfunctions,calledWavelet,areusedtoencodethedifferenceininformationbetweenadjacentapproximationMulti-ResolutionExpansionMulti-ResolutionExpansion
SeriesExpansionReal-valuedexpansioncoefficientsReal-valuedexpansionfunctionsIftheexpansionisUNIQUE-thatis,thereisonlyonesetofforanygiven-thearecalledbasisfunctions,andtheexpansionset,,iscalledaBASISfortheclassoffunctionsthatcanbesoexpressed.TheexpressiblefunctionsformafunctionspacethatisreferredtoastheclosespanoftheexpansionsetMulti-ResolutionExpansion
SeriesExpansionDualFunctionsMulti-ResolutionExpansion
SeriesExpansionCASE1:ExpansionfunctionsformanorthonormalbasisCASE2:Expansionfunctionsarenotorthonormal,butareanorthogonalbasis(biorthogonalbasis)CASE3:ExpansionsetisnotabasisMulti-ResolutionExpansion
ScalingFunctionsMulti-ResolutionExpansion
ScalingFunctionsThescalingfunctionsisORTHOGONALtoitsintegertranslations.Thesubspacespannedbythescalingfunctionatlowscalesarenestedwithinthosespannedathigherscales.TheonlyfunctionthatiscommontoallVj
is
f(x)=0AnyfunctioncanberepresentedwitharbitraryprecisionMulti-ResolutionExpansion
MRARequirementsMulti-ResolutionExpansion
MRARequirementsScalingVectorMulti-ResolutionExpansion
WaveletFunctionsUnionofSpacesMulti-ResolutionExpansion
Wavele
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度智慧能源管理供煤合同模板
- 2025年度電子產(chǎn)品貨物運(yùn)輸合同協(xié)議書標(biāo)準(zhǔn)文本
- 2025年度健身場(chǎng)地租賃合同范本(含場(chǎng)地環(huán)保責(zé)任)
- 2025年度豬舍智能養(yǎng)殖系統(tǒng)集成與優(yōu)化合同
- 2025年度智能制造生產(chǎn)線職工勞動(dòng)合同范本
- 2025年度智慧農(nóng)業(yè)機(jī)電安裝與控制系統(tǒng)合同
- 2025年度新型混凝土添加劑研發(fā)與市場(chǎng)推廣合同
- 2025年度國際物流貨物運(yùn)輸與保險(xiǎn)服務(wù)合同
- 2025年境外施工環(huán)境保護(hù)監(jiān)測(cè)合同模板
- 2025年度國際貿(mào)易人力資源招聘與培訓(xùn)合同
- 塑料成型模具設(shè)計(jì)(第2版)江昌勇課件1-塑料概述
- 產(chǎn)業(yè)園EPC總承包工程項(xiàng)目施工組織設(shè)計(jì)
- 高中生物 人教版 選修二《生態(tài)系統(tǒng)及其穩(wěn)定性》 《生態(tài)系統(tǒng)及其穩(wěn)定性》單元教學(xué)設(shè)計(jì)
- 方形補(bǔ)償器計(jì)算
- 為加入燒火佬協(xié)會(huì)致辭(7篇)
- 兒科重癥監(jiān)護(hù)病房管理演示文稿
- 甲基異丁基甲酮化學(xué)品安全技術(shù)說明書
- 條形基礎(chǔ)的平法識(shí)圖課件
- 秘書實(shí)務(wù)完整版課件全套ppt教程
- 新版神經(jīng)系統(tǒng)疾病的病史采集和體格檢查ppt
- 義務(wù)教育《歷史》課程標(biāo)準(zhǔn)(2022年版)
評(píng)論
0/150
提交評(píng)論