版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆河北省張家口市宣化市一中高三線上練習(xí)測試:三角函數(shù)考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù),,若,對任意恒有,在區(qū)間上有且只有一個使,則的最大值為()A. B. C. D.2.已知集合,則等于()A. B. C. D.3.已知、分別是雙曲線的左、右焦點,過作雙曲線的一條漸近線的垂線,分別交兩條漸近線于點、,過點作軸的垂線,垂足恰為,則雙曲線的離心率為()A. B. C. D.4.設(shè),,分別是中,,所對邊的邊長,則直線與的位置關(guān)系是()A.平行 B.重合C.垂直 D.相交但不垂直5.已知某幾何體的三視圖如圖所示,則該幾何體的體積是()A. B.64 C. D.326.函數(shù)的部分圖象大致是()A. B.C. D.7.某幾何體的三視圖如圖所示,其中正視圖是邊長為4的正三角形,俯視圖是由邊長為4的正三角形和一個半圓構(gòu)成,則該幾何體的體積為()A. B. C. D.8.已知點在雙曲線上,則該雙曲線的離心率為()A. B. C. D.9.設(shè)集合,,則().A. B.C. D.10.已知實數(shù),則的大小關(guān)系是()A. B. C. D.11.已知將函數(shù)(,)的圖象向右平移個單位長度后得到函數(shù)的圖象,若和的圖象都關(guān)于對稱,則下述四個結(jié)論:①②③④點為函數(shù)的一個對稱中心其中所有正確結(jié)論的編號是()A.①②③ B.①③④ C.①②④ D.②③④12.已知α,β表示兩個不同的平面,l為α內(nèi)的一條直線,則“α∥β是“l(fā)∥β”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列滿足對任意,若,則數(shù)列的通項公式________.14.某市公租房源位于、、三個小區(qū),每位申請人只能申請其中一個小區(qū)的房子,申請其中任意一個小區(qū)的房子是等可能的,則該市的任意位申請人中,恰好有人申請小區(qū)房源的概率是______.(用數(shù)字作答)15.在中,、的坐標(biāo)分別為,,且滿足,為坐標(biāo)原點,若點的坐標(biāo)為,則的取值范圍為__________.16.設(shè)為數(shù)列的前項和,若,則____三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)過點作傾斜角為的直線與曲線(為參數(shù))相交于M、N兩點.(1)寫出曲線C的一般方程;(2)求的最小值.18.(12分)已知函數(shù),其中e為自然對數(shù)的底數(shù).(1)討論函數(shù)的單調(diào)性;(2)用表示中較大者,記函數(shù).若函數(shù)在上恰有2個零點,求實數(shù)a的取值范圍.19.(12分)在中,角的對邊分別為,且.(1)求角的大小;(2)已知外接圓半徑,求的周長.20.(12分)已知直線與拋物線交于兩點.(1)當(dāng)點的橫坐標(biāo)之和為4時,求直線的斜率;(2)已知點,直線過點,記直線的斜率分別為,當(dāng)取最大值時,求直線的方程.21.(12分)已知,函數(shù)的最小值為1.(1)證明:.(2)若恒成立,求實數(shù)的最大值.22.(10分)如圖所示,在四棱錐中,底面是棱長為2的正方形,側(cè)面為正三角形,且面面,分別為棱的中點.(1)求證:平面;(2)求二面角的正切值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
根據(jù)的零點和最值點列方程組,求得的表達(dá)式(用表示),根據(jù)在上有且只有一個最大值,求得的取值范圍,求得對應(yīng)的取值范圍,由為整數(shù)對的取值進(jìn)行驗證,由此求得的最大值.【詳解】由題意知,則其中,.又在上有且只有一個最大值,所以,得,即,所以,又,因此.①當(dāng)時,,此時取可使成立,當(dāng)時,,所以當(dāng)或時,都成立,舍去;②當(dāng)時,,此時取可使成立,當(dāng)時,,所以當(dāng)或時,都成立,舍去;③當(dāng)時,,此時取可使成立,當(dāng)時,,所以當(dāng)時,成立;綜上所得的最大值為.故選:C【點睛】本小題主要考查三角函數(shù)的零點和最值,考查三角函數(shù)的性質(zhì),考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,考查分類討論的數(shù)學(xué)思想方法,屬于中檔題.2、C【解析】
先化簡集合A,再與集合B求交集.【詳解】因為,,所以.故選:C【點睛】本題主要考查集合的基本運算以及分式不等式的解法,屬于基礎(chǔ)題.3、B【解析】
設(shè)點位于第二象限,可求得點的坐標(biāo),再由直線與直線垂直,轉(zhuǎn)化為兩直線斜率之積為可得出的值,進(jìn)而可求得雙曲線的離心率.【詳解】設(shè)點位于第二象限,由于軸,則點的橫坐標(biāo)為,縱坐標(biāo)為,即點,由題意可知,直線與直線垂直,,,因此,雙曲線的離心率為.故選:B.【點睛】本題考查雙曲線離心率的計算,解答的關(guān)鍵就是得出、、的等量關(guān)系,考查計算能力,屬于中等題.4、C【解析】試題分析:由已知直線的斜率為,直線的斜率為,又由正弦定理得,故,兩直線垂直考點:直線與直線的位置關(guān)系5、A【解析】
根據(jù)三視圖,還原空間幾何體,即可得該幾何體的體積.【詳解】由該幾何體的三視圖,還原空間幾何體如下圖所示:可知該幾何體是底面在左側(cè)的四棱錐,其底面是邊長為4的正方形,高為4,故.故選:A【點睛】本題考查了三視圖的簡單應(yīng)用,由三視圖還原空間幾何體,棱錐體積的求法,屬于基礎(chǔ)題.6、C【解析】
判斷函數(shù)的性質(zhì),和特殊值的正負(fù),以及值域,逐一排除選項.【詳解】,函數(shù)是奇函數(shù),排除,時,,時,,排除,當(dāng)時,,時,,排除,符合條件,故選C.【點睛】本題考查了根據(jù)函數(shù)解析式判斷函數(shù)圖象,屬于基礎(chǔ)題型,一般根據(jù)選項判斷函數(shù)的奇偶性,零點,特殊值的正負(fù),以及單調(diào)性,極值點等排除選項.7、A【解析】由題意得到該幾何體是一個組合體,前半部分是一個高為底面是邊長為4的等邊三角形的三棱錐,后半部分是一個底面半徑為2的半個圓錐,體積為故答案為A.點睛:思考三視圖還原空間幾何體首先應(yīng)深刻理解三視圖之間的關(guān)系,遵循“長對正,高平齊,寬相等”的基本原則,其內(nèi)涵為正視圖的高是幾何體的高,長是幾何體的長;俯視圖的長是幾何體的長,寬是幾何體的寬;側(cè)視圖的高是幾何體的高,寬是幾何體的寬.由三視圖畫出直觀圖的步驟和思考方法:1、首先看俯視圖,根據(jù)俯視圖畫出幾何體地面的直觀圖;2、觀察正視圖和側(cè)視圖找到幾何體前、后、左、右的高度;3、畫出整體,然后再根據(jù)三視圖進(jìn)行調(diào)整.8、C【解析】
將點A坐標(biāo)代入雙曲線方程即可求出雙曲線的實軸長和虛軸長,進(jìn)而求得離心率.【詳解】將,代入方程得,而雙曲線的半實軸,所以,得離心率,故選C.【點睛】此題考查雙曲線的標(biāo)準(zhǔn)方程和離心率的概念,屬于基礎(chǔ)題.9、D【解析】
根據(jù)題意,求出集合A,進(jìn)而求出集合和,分析選項即可得到答案.【詳解】根據(jù)題意,則故選:D【點睛】此題考查集合的交并集運算,屬于簡單題目,10、B【解析】
根據(jù),利用指數(shù)函數(shù)對數(shù)函數(shù)的單調(diào)性即可得出.【詳解】解:∵,∴,,.∴.故選:B.【點睛】本題考查了指數(shù)函數(shù)對數(shù)函數(shù)的單調(diào)性,考查了推理能力與計算能力,屬于基礎(chǔ)題.11、B【解析】
首先根據(jù)三角函數(shù)的平移規(guī)則表示出,再根據(jù)對稱性求出、,即可求出的解析式,從而驗證可得;【詳解】解:由題意可得,又∵和的圖象都關(guān)于對稱,∴,∴解得,即,又∵,∴,,∴,∴,,∴①③④正確,②錯誤.故選:B【點睛】本題考查三角函數(shù)的性質(zhì)的應(yīng)用,三角函數(shù)的變換規(guī)則,屬于基礎(chǔ)題.12、A【解析】試題分析:利用面面平行和線面平行的定義和性質(zhì),結(jié)合充分條件和必要條件的定義進(jìn)行判斷.解:根據(jù)題意,由于α,β表示兩個不同的平面,l為α內(nèi)的一條直線,由于“α∥β,則根據(jù)面面平行的性質(zhì)定理可知,則必然α中任何一條直線平行于另一個平面,條件可以推出結(jié)論,反之不成立,∴“α∥β是“l(fā)∥β”的充分不必要條件.故選A.考點:必要條件、充分條件與充要條件的判斷;平面與平面平行的判定.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由可得,利用等比數(shù)列的通項公式可得,再利用累加法求和與等比數(shù)列的求和公式,即可得出結(jié)論.【詳解】由,得,數(shù)列是等比數(shù)列,首項為2,公比為2,,,,,滿足上式,.故答案為:.【點睛】本題考查數(shù)列的通項公式,遞推公式轉(zhuǎn)化為等比數(shù)列是解題的關(guān)鍵,利用累加法求通項公式,屬于中檔題.14、【解析】
基本事件總數(shù),恰好有2人申請小區(qū)房源包含的基本事件個數(shù),由此能求出該市的任意5位申請人中,恰好有2人申請小區(qū)房源的概率.【詳解】解:某市公租房源位于、、三個小區(qū),每位申請人只能申請其中一個小區(qū)的房子,申請其中任意一個小區(qū)的房子是等可能的,該市的任意5位申請人中,基本事件總數(shù),該市的任意5位申請人中,恰好有2人申請小區(qū)房源包含的基本事件個數(shù):,該市的任意5位申請人中,恰好有2人申請小區(qū)房源的概率是.故答案為:.【點睛】本題考查概率的求法,考查古典概型、排列組合等基礎(chǔ)知識,考查運算求解能力,屬于中檔題.15、【解析】
由正弦定理可得點在曲線上,設(shè),則,將代入可得,利用二次函數(shù)的性質(zhì)可得范圍.【詳解】解:由正弦定理得,則點在曲線上,設(shè),則,,又,,因為,則,即的取值范圍為.故答案為:.【點睛】本題考查雙曲線的定義,考查向量數(shù)量積的坐標(biāo)運算,考查學(xué)生計算能力,有一定的綜合性,但難度不大.16、【解析】
當(dāng)時,由,解得,當(dāng)時,,兩式相減可得,即,可得數(shù)列是等比數(shù)列再求通項公式.【詳解】當(dāng)時,,即,當(dāng)時,,兩式相減可得,即,即,故數(shù)列是以為首項,為公比的等比數(shù)列,所以.故答案為:【點睛】本題考查數(shù)列的前項和與通項公式的關(guān)系,還考查運算求解能力以及化歸與轉(zhuǎn)化思想,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
(1)將曲線的參數(shù)方程消參得到普通方程;(2)寫出直線MN的參數(shù)方程,將參數(shù)方程代入曲線方程,并將其化為一個關(guān)于的一元二次方程,根據(jù),結(jié)合韋達(dá)定理和余弦函數(shù)的性質(zhì),即可求出的最小值.【詳解】(1)由曲線C的參數(shù)方程(是參數(shù)),可得,即曲線C的一般方程為.(2)直線MN的參數(shù)方程為(t為參數(shù)),將直線MN的參數(shù)方程代入曲線,得,整理得,設(shè)M,N對應(yīng)的對數(shù)分別為,,則,當(dāng)時,取得最小值為.【點睛】該題考查的是有關(guān)參數(shù)方程的問題,涉及到的知識點有參數(shù)方程向普通方程的轉(zhuǎn)化,直線的參數(shù)方程的應(yīng)用,屬于簡單題目.18、(1)函數(shù)的單調(diào)遞增區(qū)間為和,單調(diào)遞減區(qū)間為;(2).【解析】
(1)由題可得,結(jié)合的范圍判斷的正負(fù),即可求解;(2)結(jié)合導(dǎo)數(shù)及函數(shù)的零點的判定定理,分類討論進(jìn)行求解【詳解】(1),①當(dāng)時,,∴函數(shù)在內(nèi)單調(diào)遞增;②當(dāng)時,令,解得或,當(dāng)或時,,則單調(diào)遞增,當(dāng)時,,則單調(diào)遞減,∴函數(shù)的單調(diào)遞增區(qū)間為和,單調(diào)遞減區(qū)間為(2)(Ⅰ)當(dāng)時,所以在上無零點;(Ⅱ)當(dāng)時,,①若,即,則是的一個零點;②若,即,則不是的零點(Ⅲ)當(dāng)時,,所以此時只需考慮函數(shù)在上零點的情況,因為,所以①當(dāng)時,在上單調(diào)遞增。又,所以(?。┊?dāng)時,在上無零點;(ⅱ)當(dāng)時,,又,所以此時在上恰有一個零點;②當(dāng)時,令,得,由,得;由,得,所以在上單調(diào)遞減,在上單調(diào)遞增,因為,,所以此時在上恰有一個零點,綜上,【點睛】本題考查利用導(dǎo)數(shù)求函數(shù)單調(diào)區(qū)間,考查利用導(dǎo)數(shù)處理零點個數(shù)問題,考查運算能力,考查分類討論思想19、(1)(2)3+3【解析】
(1)利用余弦的二倍角公式和同角三角函數(shù)關(guān)系式化簡整理并結(jié)合范圍0<A<π,可求A的值.(2)由正弦定理可求a,利用余弦定理可得c值,即可求周長.【詳解】(1),即又(2),∵,∴由余弦定理得a2=b2+c2﹣2bccosA,∴,∵c>0,所以得c=2,∴周長a+b+c=3+3.【點睛】本題考查三角函數(shù)恒等變換的應(yīng)用,正弦定理,余弦定理在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于中檔題.20、(1)(2)【解析】
(1)設(shè),根據(jù)直線的斜率公式即可求解;(2)設(shè)直線的方程為,聯(lián)立直線與拋物線方程,由韋達(dá)定理得,,結(jié)合直線的斜率公式得到,換元后討論的符號,求最值可求解.【詳解】(1)設(shè),因為,即直線的斜率為1.(2)顯然直線的斜率存在,設(shè)直線的方程為.聯(lián)立方程組,可得則,令,則則當(dāng)時,;當(dāng)且僅當(dāng),即時,解得時,取“=”號,當(dāng)時,;當(dāng)時,綜上所述,當(dāng)時,取得最大值,此時直線的方程是.【點睛】本題主要考查了直線的斜率公式,直線與拋物線的位置關(guān)系,換元法,均值不等式,考查了運算能力,屬于難題.21、(1)2;(2)【解析】分析:(1)將轉(zhuǎn)化為分段函數(shù),求函數(shù)的最小值(2)分離參數(shù),利用基本不等式證明即可.詳解:(Ⅰ)證明:,顯然在上單調(diào)遞減,在上單調(diào)遞增,所以的最小值為,即.(Ⅱ)因為恒成立,所以恒成立,當(dāng)且僅當(dāng)時,取得最小值,所以,即實數(shù)的最大值為.點睛:本題主要考查含兩個絕對值的函數(shù)的最值和不等式的應(yīng)用,第二問恒成立問題分離參數(shù),利用基本不等式求解很關(guān)鍵,屬于中檔題.22、(1)見證明;(2)【解析】
(1)取PD中點
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 城鎮(zhèn)老舊小區(qū)改造項目可行性研究報告
- 液壓抽油機(jī)系統(tǒng)課程設(shè)計
- 2024外墻保溫施工項目進(jìn)度與成本控制協(xié)議3篇
- 2024年標(biāo)準(zhǔn)格式分體空調(diào)買賣協(xié)議模板版B版
- 2024年教育咨詢公司招聘教師及教育資源共享合同3篇
- 瓷磚效果圖課程設(shè)計
- 接觸帽螺蓋課程設(shè)計
- 2024年多功能制冷機(jī)銷售合同3篇
- 物流機(jī)器人課程設(shè)計
- 2024年綠化苗木采購與種植服務(wù)合同版B版
- 數(shù)學(xué)與應(yīng)用數(shù)學(xué)專業(yè)大學(xué)生職業(yè)生涯規(guī)劃書
- 起重機(jī)械安裝拆卸工安全操作規(guī)程
- 安徽省合肥市琥珀中學(xué)2023-2024學(xué)年八年級上學(xué)期期中語文試題
- 面向多目標(biāo)優(yōu)化的煙草制絲APS設(shè)計與實現(xiàn)
- 標(biāo)準(zhǔn)的指令性目標(biāo)問題解決型案例
- 梅花落唐楊炯
- (新平臺)國家開放大學(xué)《農(nóng)村社會學(xué)》形考任務(wù)1-4參考答案
- 部編版七年級語文上冊(課本全冊)課后習(xí)題參考答案
- 2022-2023學(xué)年成都市高二上英語期末考試題(含答案)
- 家庭教育指導(dǎo)師考試復(fù)習(xí)(重點)題庫(150題)
- 大學(xué)英語語法專項練習(xí)題及答案
評論
0/150
提交評論