




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
云南省鹽津縣第三中學2025屆高一數(shù)學第一學期期末學業(yè)質量監(jiān)測試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.命題“,是4的倍數(shù)”的否定為()A.,是4的倍數(shù) B.,不是4的倍數(shù)C.,不是4的倍數(shù) D.,不是4的倍數(shù)2.已知,,,則下列關系中正確的是A. B.C. D.3.一人打靶中連續(xù)射擊兩次,事件“至少有一次中靶”的互斥事件是()A.至多有一次中靶 B.兩次都中靶C.兩次都不中靶 D.只有一次中靶4.如果是定義在上的函數(shù),使得對任意的,均有,則稱該函數(shù)是“-函數(shù)”.若函數(shù)是“-函數(shù)”,則實數(shù)的取值范圍是()A. B.C. D.5.函數(shù)的零點所在的區(qū)間是()A. B.C. D.6.已知角頂點與原點重合,始邊與軸的正半軸重合,點在角的終邊上,則()A. B.C. D.7.已知扇形的周長為15cm,圓心角為3rad,則此扇形的弧長為()A.3cm B.6cmC.9cm D.12cm8.將半徑都為1的4個鋼球完全裝入形狀為正四面體的容器里,這個正四面體的高的最小值為()A. B.C. D.9.已知函數(shù)(且),若函數(shù)圖象上關于原點對稱的點至少有3對,則實數(shù)a的取值范圍是().A. B.C. D.10.“龜兔賽跑”講述了這樣的故事:領先的兔子看著慢慢爬行的烏龜,驕傲起來,睡了一覺.當它醒來時,發(fā)現(xiàn)烏龜快到終點了,于是急忙追趕,但為時已晚,烏龜還是先到達了終點.用,分別表示烏龜和兔子所行的路程(為時間),則下圖與故事情節(jié)相吻合的是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù)(且),若對,,都有.則實數(shù)a的取值范圍是___________12.已知扇形的圓心角為,其弧長是其半徑的2倍,則__________13.如圖,網格紙上正方形小格的邊長為1,圖中粗線畫出的是某三棱錐的三視圖,則該三棱錐的體積為__________14.某工廠產生的廢氣經過濾后排放,過濾過程中廢氣的污染物含量P(單位:mg/L)與時間t(單位:h)間的關系為,其中,是正的常數(shù).如果在前5h消除了10%的污染物,那么10h后還剩百分之幾的污染物________.15.正實數(shù)a,b,c滿足a+2-a=2,b+3b=3,c+=4,則實數(shù)a,b,c之間的大小關系為_________.16.函數(shù)f(x)=log2(x2-5),則f(3)=______三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知,求下列各式的值:(1);(2).18.如圖,在三棱錐S—ABC中,SC⊥平面ABC,點P、M分別是SC和SB的中點,設PM=AC=1,∠ACB=90°,直線AM與直線SC所成的角為60°.(1)求證:平面MAP⊥平面SAC.(2)求二面角M—AC—B的平面角的正切值;19.已知函數(shù),.(1)對任意的,恒成立,求實數(shù)k的取值范圍;(2)設,證明:有且只有一個零點,且.20.國際上常用恩格爾系數(shù)r來衡量一個國家或地區(qū)的人民生活水平.根據(jù)恩格爾系數(shù)的大小,可將各個國家或地區(qū)的生活水平依次劃分為:貧困,溫飽,小康,富裕,最富裕等五個級別,其劃分標準如下表:級別貧困溫飽小康富裕最富裕標準r>60%50%<r≤60%40%<r=50%30%<r≤40%r≤30%某地區(qū)每年底計算一次恩格爾系數(shù),已知該地區(qū)2000年底的恩格爾系數(shù)為60%.統(tǒng)計資料表明:該地區(qū)食物支出金額年平均增長4%,總支出金額年平均增長.根據(jù)上述材料,回答以下問題.(1)該地區(qū)在2010年底是否已經達到小康水平,說明理由;(2)最快到哪一年底,該地區(qū)達到富裕水平?參考數(shù)據(jù):,,,21.已知函數(shù)的最小值正周期是(1)求的值;(2)求函數(shù)的最大值,并且求使取得最大值的x的集合
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】根據(jù)特稱量詞命題的否定是全稱量詞命題即可求解【詳解】因為特稱量詞命題的否定是全稱量詞命題,所以命題“,是4的倍數(shù)”的否定為“,不是4的倍數(shù)”故選:B2、C【解析】利用函數(shù)的單調性、正切函數(shù)的值域即可得出【詳解】,,∴,又∴,則下列關系中正確的是:故選C【點睛】本題考查了指對函數(shù)的單調性、三角函數(shù)的單調性的應用,屬于基礎題3、C【解析】根據(jù)互斥事件定義依次判斷各個選項即可.【詳解】對于A,若恰好中靶一次,則“至少有一次中靶”與“至多有一次中靶”同時發(fā)生,不是互斥事件,A錯誤;對于B,若兩次都中靶,則“至少有一次中靶”與“兩次都中靶”同時發(fā)生,不是互斥事件,B錯誤;對于C,若兩次都不中靶,則“至少有一次中靶”與“兩次都不中靶”不能同時發(fā)生,是互斥事件,C正確;對于D,若只有一次中靶,則“至少有一次中靶”與“只有一次中靶”同時發(fā)生,不是互斥事件,D錯誤.故選:C.4、A【解析】根據(jù)題中的新定義轉化為,即,根據(jù)的值域求的取值范圍.【詳解】,,函數(shù)是“-函數(shù)”,對任意,均有,即,,即,又,或.故選:A【點睛】關鍵點點睛:本題考查函數(shù)新定義,關鍵是讀懂新定義,并使用新定義,并能轉化為函數(shù)值域解決問題.5、B【解析】根據(jù)函數(shù)零點存在性定理判斷即可【詳解】,,,故零點所在區(qū)間為故選:B6、D【解析】先根據(jù)三角函數(shù)的定義求出,然后采用弦化切,代入計算即可【詳解】因為點在角的終邊上,所以故選:D7、C【解析】利用扇形弧長公式進行求解.【詳解】設扇形弧長為lcm,半徑為rcm,則,即且,解得:(cm),故此扇形的弧長為9cm.故選:C8、C【解析】由題意可得,底面放三個鋼球,上再落一個鋼球時體積最小,于是把鋼球的球心連接,則可得到一個棱長為2的小正四面體,該小正四面體的高為,且由正四面體的性質可知,正四面體的中心到底面的距離是高的,且小正四面體的中心和正四面體容器的中心是重合的,所以小正四面體的中心到底面的距離是,正四面體的中心到底面的距離是,所以可知正四面體的高的最小值為,故選擇C考點:幾何體的體積9、A【解析】由于關于原點對稱得函數(shù)為,由題意可得,與的圖像在的交點至少有3對,結合函數(shù)圖象,列出滿足要求的不等式,即可得出結果.【詳解】關于原點對稱得函數(shù)為所以與的圖像在的交點至少有3對,可知,如圖所示,當時,,則故實數(shù)a的取值范圍為故選:A【點睛】本題考查函數(shù)的對稱性,難點在于將問題轉換為與的圖像在的交點至少有3對,考查了運算求解能力和邏輯推理能力,屬于難題.10、B【解析】分別分析烏龜和兔子隨時間變化它們的路程變化情況,即直線的斜率變化即可.【詳解】解:對于烏龜,其運動過程分為兩段:從起點到終點烏龜沒有停歇,一直以勻速前進,其路程不斷增加;到終點后,等待兔子那段時間路程不變;對于兔子,其運動過程分三段:開始跑的快,即速度大,所以路程增加的快;中間由于睡覺,速度為零,其路程不變;醒來時追趕烏龜,速度變大,所以路程增加的快;但是最終是烏龜?shù)竭_終點用的時間短.故選:B【點睛】本題考查利用函數(shù)圖象對實際問題進行刻畫,是基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】由條件可知函數(shù)是增函數(shù),可得分段函數(shù)兩段都是增函數(shù),且時,滿足,由不等式組求解即可.【詳解】因為對,且都有成立,所以函數(shù)在上單調遞增.所以,解得.故答案為:12、-1【解析】由已知得,所以則,故答案.13、1【解析】由圖可知,該三棱錐的體積為V=14、81%【解析】根據(jù)題意,利用函數(shù)解析式,直接求解.【詳解】由題意可知,,所以.所以10小時后污染物含量,即10小時后還剩81%的污染物.故答案為:81%15、##【解析】利用指數(shù)的性質及已知條件求a、b的范圍,討論c的取值范圍,結合對數(shù)的性質求c的范圍【詳解】由,由,又,當時,,顯然不成立;當時,,不成立;當時,;綜上,.故答案為:16、2【解析】利用對數(shù)性質及運算法則直接求解【詳解】∵函數(shù)f(x)=log2(x2-5),∴f(3)=log2(9-5)=log24=2故答案為2【點睛】本題考查函數(shù)值的求法,考查函數(shù)性質等基礎知識,考查運算求解能力,是基礎題三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)求出的值,利用誘導公式結合弦化切可求得結果;(2)在代數(shù)式上除以,再結合弦化切可求得結果.【小問1詳解】解:因為,則,原式【小問2詳解】解:原式.18、(1)證明見解析(2)【解析】(1)由已知可證BC⊥平面SAC,又PM∥BC,則PM⊥面SAC,從而可證平面MAP⊥平面SAC;(2)由AC⊥平面SBC,可得∠MCB為二面角M—AC-B的平面角,過點M作MN⊥CB于N點,連接AN,則∠AMN=60°,由勾股定理可得,在中,可得,從而在中,即可求解二面角M—AC—B的平面角的正切值.【小問1詳解】證明:∵SC⊥平面ABC,∴SC⊥BC,又∵∠ACB=90°,∴AC⊥BC,又ACSC=C,∴BC⊥平面SAC,又∵P,M是SC、SB的中點,∴PM∥BC,∴PM⊥面SAC,又PM平面MAP,∴平面MAP⊥平面SAC;【小問2詳解】解:∵SC⊥平面ABC,∴SC⊥AC,又AC⊥BC,BCSC=C,∴AC⊥平面SBC,∴AC⊥CM,AC⊥CB,從而∠MCB為二面角M—AC-B的平面角,∵直線AM與直線PC所成的角為60°,∴過點M作MN⊥CB于N點,連接AN,則∠AMN=60°,在△CAN中,由勾股定理可得,在中,,在中,.19、(1);(2)證明見解析.【解析】(1)利用的單調性以及對數(shù)函數(shù)的單調性,即可求出的范圍(2)對進行分類討論,分為:和,利用零點存在定理和數(shù)形結合進行分析,即可求解【詳解】解:(1)因為是增函數(shù),是減函數(shù),所以在上單調遞增.所以的最小值為,所以,解得,所以實數(shù)k的取值范圍是.(2)函數(shù)的圖象在上連續(xù)不斷.①當時,因為與在上單調遞增,所以在上單調遞增.因為,,所以.根據(jù)函數(shù)零點存在定理,存在,使得.所以在上有且只有一個零點.②當時,因為單調遞增,所以,因為.所以.所以在上沒有零點.綜上:有且只有一個零點.因為,即,所以,.因為在上單調遞減,所以,所以.【點睛】關鍵點睛:對進行分類討論時,①當時,因為與在上單調遞增,再結合零點存在定理,即可求解;②當時,恒成立,所以,在上沒有零點;最后利用,得到,然后化簡可求解。本題考查函數(shù)的性質,函數(shù)的零點等知識;考查學生運算求解,推理論證的能力;考查數(shù)形結合,分類與整合,函數(shù)與方程,化歸與轉化的數(shù)學思想,屬于難題20、(1)已經達到,理由見解析(2)2022年【解析】(1)根據(jù)該地區(qū)食物支出金額年平均增長4%,總支出金額年平均增長的比例列式求解,判斷十年后是否達到即可.(2)假設經過n年,該地區(qū)達到富裕水平,列式,利用指對數(shù)互化解不等式即可.【小問1詳解】該地區(qū)2000
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 水利工程施工中的時間安排措施
- 2025年壓力管道作業(yè)特種操作證考試歷年真題匯編與實戰(zhàn)演練試卷
- 2025年制冷設備維修工(中級)職業(yè)技能鑒定模擬試題庫
- 2025年養(yǎng)老護理員(中級)考試試卷:養(yǎng)老護理員護理技術提升與護理質量控制
- 2025年中式烹調師(高級)中式烹飪研討理論考核試卷
- 在線學習平臺軟件項目開發(fā)工作流程
- 2025年中學教師資格考試《綜合素質》教育法律法規(guī)強化試題集及答案
- 2025年中式烹調師職業(yè)技能鑒定考試策略試卷
- 2025年寵物美容師職業(yè)技能考核試卷中的寵物美容師行業(yè)創(chuàng)新試題
- 初二物理家長互動活動計劃
- 軟裝搭配與色彩運用考核試卷
- 合伙經營吊車協(xié)議書
- 民辦非企業(yè)會計制度
- 2023光伏發(fā)電站快速頻率響應檢測規(guī)程
- 廣東省廣州市2025屆高三下學期考前沖刺訓練(二)英語試卷(含答案)
- 我國戰(zhàn)略性金屬和關鍵礦產發(fā)展白皮書-2025-05-宏觀大勢
- 2025年入團考試開放機會與試題與答案
- 電梯安全管理員培訓
- 民辦學校新學期課程設置計劃
- 【MOOC】《學術交流英語》(東南大學)章節(jié)中國大學慕課答案
- 數(shù)字經濟學導論-全套課件
評論
0/150
提交評論