版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆云南省曲靖市富源縣二中高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知橢圓的離心率為,直線與橢圓交于兩點,為坐標(biāo)原點,且,則橢圓的方程為A B.C. D.2.如圖,D是正方體的一個“直角尖”O(jiān)-ABC(OA,OB,OC兩兩垂直且相等)棱OB的中點,P是BC中點,Q是AD上的一個動點,連PQ,則當(dāng)AC與PQ所成角為最小時,()A. B.C. D.23.如圖,矩形BDEF所在平面與正方形ABCD所在平面互相垂直,,,點P在線段EF上.給出下列命題:①存在點P,使得直線平面ACF;②存在點P,使得直線平面ACF;③直線DP與平面ABCD所成角的正弦值的取值范圍是;④三棱錐的外接球被平面ACF所截得的截面面積是.其中所有真命題的序號()A.①③ B.①④C.①②④ D.①③④4.在空間直角坐標(biāo)系中,點關(guān)于軸的對稱點為點,則點到直線的距離為()A B.C. D.65.已知銳角的內(nèi)角A,B,C的對邊分別為a,b,c,若向量,,,則的最小值為()A. B.C. D.6.在三棱錐中,平面,,,,Q是邊上的一動點,且直線與平面所成角的最大值為,則三棱錐的外接球的表面積為()A. B.C. D.7.已知二次函數(shù)交軸于,兩點,交軸于點.若圓過,,三點,則圓的方程是()A. B.C. D.8.已知關(guān)于的不等式的解集是,則的值是()A. B.5C. D.79.已知函數(shù),則()A.函數(shù)的極大值為,無極小值 B.函數(shù)的極小值為,無極大值C.函數(shù)的極大值為0,無極小值 D.函數(shù)的極小值為0,無極大值10.已知橢圓:的左、右焦點分別為,,點P是橢圓上的動點,,,則的最小值為()A. B.C D.11.已知定義在R上的函數(shù)滿足,且有,則的解集為()A. B.C. D.12.設(shè)F是雙曲線的左焦點,,P是雙曲線右支上的動點,則的最小值為()A.5 B.C. D.9二、填空題:本題共4小題,每小題5分,共20分。13.已知拋物線的焦點為,準(zhǔn)線為,過點的直線與拋物線交于A,B兩點(點B在第一象限),與準(zhǔn)線交于點P.若,,則____________.14.已知為直線上的動點,為函數(shù)圖象上的動點,則的最小值為______15.設(shè)O為坐標(biāo)原點,拋物線的焦點為F,P為拋物線上一點,若,則的面積為____________16.某古典概型的樣本空間,事件,則___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓過點,離心率為.(1)求橢圓的方程;(2)過點作直線,與直線和橢圓分別交于兩點,(與不重合).判斷以為直徑的圓是否過定點,如果過定點,求出定點坐標(biāo);如果不過定點,說明理由.18.(12分)從甲、乙兩名學(xué)生中選拔一人參加射擊比賽,現(xiàn)對他們的射擊水平進(jìn)行測試,兩人在相同條件下各射靶10次,每次命中的環(huán)數(shù)如下:甲:7,8,6,8,6,5,9,10,7,乙:9,5,7,8,7,6,8,6,7,(1)求,,,(2)你認(rèn)為應(yīng)該選哪名學(xué)生參加比賽?為什么?19.(12分)已知函數(shù).(1)求的單調(diào)區(qū)間;(2)求函數(shù)在區(qū)間上的最大值與最小值.20.(12分)在①,②,③這三個條件中任選一個,補充在下面問題中,若問題中的存在,求實數(shù)的取值范圍;若問題中的不存在,請說明理由設(shè)等差數(shù)列的前n項和為,數(shù)列的前n項和為,___________,,,是否存在實數(shù),對任意都有?21.(12分)已知橢圓)過點A(0,),且與雙曲線有相同的焦點(1)求橢圓C的方程;(2)設(shè)M,N是橢圓C上異于A的兩點,且滿足,試判斷直線MN是否過定點,并說明理由22.(10分)定義:設(shè)是空間的一個基底,若向量,則稱有序?qū)崝?shù)組為向量在基底下的坐標(biāo).已知是空間的單位正交基底,是空間的另一個基底,若向量在基底下的坐標(biāo)為(1)求向量在基底下的坐標(biāo);(2)求向量在基底下的模
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據(jù)等腰直角三角形的性質(zhì)可得,將代入橢圓方程,結(jié)合離心率為以及性質(zhì)列方程組求得與的值,從而可得結(jié)果.【詳解】設(shè)直線與橢圓在第一象限的交點為,因為,所以,即,由可得,,故所求橢圓的方程為.故選D.【點睛】本題主要考查橢圓的標(biāo)準(zhǔn)方程與性質(zhì),以及橢圓離心率的應(yīng)用,意在考查對基礎(chǔ)知識掌握的熟練程度,屬于中檔題.2、C【解析】根據(jù)題意,建立空間直角坐標(biāo)系,求得AC與PQ夾角的余弦值關(guān)于點坐標(biāo)的函數(shù)關(guān)系,求得角度最小時點的坐標(biāo),即可代值計算求解結(jié)果.【詳解】根據(jù)題意,兩兩垂直,故以為坐標(biāo)原點,建立空間直角坐標(biāo)系如下所示:設(shè),則,不妨設(shè)點的坐標(biāo)為,則,,則,又,設(shè)直線所成角為,則,則,令,令,則,令,則,此時.故當(dāng)時,取得最大值,此時最小,點,則,故,則故選:C.3、D【解析】當(dāng)點P是線段EF中點時判斷①;假定存在點P,使得直線平面ACF,推理導(dǎo)出矛盾判斷②;利用線面角的定義轉(zhuǎn)化列式計算判斷③;求出外接圓面積判斷④作答.【詳解】取EF中點G,連DG,令,連FO,如圖,在正方形ABCD中,O為BD中點,而BDEF是矩形,則且,即四邊形DGFO是平行四邊形,即有,而平面ACF,平面ACF,于是得平面ACF,當(dāng)點P與G重合時,直線平面ACF,①正確;假定存在點P,使得直線平面ACF,而平面ACF,則,又,從而有,在中,,DG是直角邊EF上中線,顯然在線段EF上不存在點與D連線垂直于DG,因此,假設(shè)是錯的,即②不正確;因平面平面,平面平面,則線段EF上的動點P在平面上的射影在直線BD上,于是得是直線DP與平面ABCD所成角的,在矩形BDEF中,當(dāng)P與E不重合時,,,而,則,當(dāng)P與E重合時,,,因此,,③正確;因平面平面,平面平面,,平面,則平面,,在中,,顯然有,,由正弦定理得外接圓直徑,,三棱錐的外接球被平面ACF所截得的截面是的外接圓,其面積為,④正確,所以所給命題中正確命題的序號是①③④.故選:D【點睛】結(jié)論點睛:兩個平面互相垂直,則一個平面內(nèi)任意一點在另一個平面上的射影都在這兩個平面的交線上.4、C【解析】按照空間中點到直線的距離公式直接求解.【詳解】由題意,,,的方向向量,,則點到直線的距離為.故選:C.5、C【解析】由,得到,根據(jù)正弦、余弦定理定理化簡得到,化簡得到,再結(jié)合基本不等式,即可求解.【詳解】由題意,向量,,因為,所以,可得,由正弦定理得,整理得,又由余弦定理,可得,因為,所以,由,所以,因為是銳角三角形,且,可得,解得,所以,所以,當(dāng)且僅當(dāng),即時等號成立,故的最小值為.故選:C6、C【解析】由平面,直線與平面所成角的最大時,最小,也即最小,,由此可求得,從而得,得長,然后取外心,作,取H為的中點,使得,則易得,求出的長即為外接球半徑,從而可得面積【詳解】三棱錐中,平面,直線與平面所成角為,如圖所示;則,且的最大值是,,的最小值是,即A到的距離為,,,在中可得,又,,可得;取的外接圓圓心為,作,取H為的中點,使得,則易得,由,解得,,,,由勾股定理得,所以三棱錐的外接球的表面積是.【點睛】本題考查求球的表面積,解題關(guān)鍵是確定球的球心,三棱錐的外接球心在過各面外心且與此面垂直的直線上7、C【解析】由已知求得點A、B、C的坐標(biāo),則有AB的垂直平分線必過圓心,所以設(shè)圓的圓心為,由,可求得圓M的半徑和圓心,由此求得圓的方程.【詳解】解:由解得或,所以,又令,得,所以,因為圓過,,三點,所以AB的垂直平分線必過圓心,所以設(shè)圓的圓心為,所以,即,解得,所以圓心,半徑,所以圓的方程是,即,故選:C8、D【解析】由題意可得的根為,然后利用根與系數(shù)的關(guān)系列方程組可求得結(jié)果【詳解】因為關(guān)于的不等式的解集是,所以方程的根為,所以,得,所以,故選:D9、A【解析】利用導(dǎo)數(shù)來求得的極值.【詳解】的定義域為,,在遞增;在遞減,所以的極大值為,沒有極小值.故選:A10、A【解析】由橢圓的定義可得;利用基本不等式,若,則,當(dāng)且僅當(dāng)時取等號.【詳解】根據(jù)橢圓的定義可知,,即,因為,,所以,當(dāng)且僅當(dāng),時等號成立.故選:A11、A【解析】構(gòu)造,應(yīng)用導(dǎo)數(shù)及已知條件判斷的單調(diào)性,而題設(shè)不等式等價于即可得解.【詳解】設(shè),則,∴R上單調(diào)遞增.又,則.∵等價于,即,∴,即所求不等式的解集為.故選:A.12、B【解析】由雙曲線的的定義可得,于是將問題轉(zhuǎn)化為求的最小值,由得出答案.【詳解】設(shè)雙曲線的由焦點為,且點A在雙曲線的兩支之間.由雙曲線的定義可得,即所以當(dāng)且僅當(dāng)三點共線時,取得等號.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】過點作,垂足為,過點作,垂足為,然后根據(jù)拋物線的定義和三角形相似的關(guān)系可求得結(jié)果【詳解】過點作,垂足為,過點作,垂足為,由拋物線的定義可知,,不妨設(shè),因為,所以,因為∽,所以,即,所以,所以,因為與反向,所以.故答案為:14、【解析】求得的導(dǎo)數(shù),由題意可得與直線平行的直線和曲線相切,然后求出的值最小,設(shè)出切點,求出切線方程,再由兩直線平行的距離公式,得到的最小值【詳解】解:函數(shù)的導(dǎo)數(shù)為,設(shè)與直線平行的直線與曲線相切,設(shè)切點為,則,所以,所以,所以,所以,所以切線方程為,可得的最小值為,故答案為:15、【解析】根據(jù)拋物線定義求出點坐標(biāo),即可求出面積.【詳解】由題可得,設(shè),則由拋物線定義可得,解得,代入拋物線方程可得,所以.故答案為:.16、##0.5【解析】根據(jù)定義直接計算得到答案.【詳解】.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)過定點,定點為【解析】(1)根據(jù)離心率及頂點坐標(biāo)求出即可得橢圓方程;(2)當(dāng)直線斜率存在時,設(shè)直線的方程為(),求出的坐標(biāo),設(shè)是以為直徑的圓上的點,利用向量垂直可得恒成立,可得定點,斜率不存在時驗證即可.【小問1詳解】由題意得,,,又因為,所以.所以橢圓C的方程為.【小問2詳解】以為直徑的圓過定點.理由如下:當(dāng)直線斜率存在時,設(shè)直線的方程為().令,得,所以.由得,則或,所以.設(shè)是以為直徑的圓上的任意一點,則,.由題意,,則以為直徑的圓的方程為.即恒成立即解得故以為直徑的圓恒過定點.當(dāng)直線斜率不存在時,以為直徑的圓也過點.綜上,以為直徑的圓恒過定點.18、(1);;;;(2)選乙參加比賽,理由見解析.【解析】(1)利用平均數(shù)和方程公式求解;(2)利用(1)的結(jié)果作出判斷.【詳解】(1)由數(shù)據(jù)得:;;(2)由(1)可知,甲乙兩人平均成績一樣,乙的方差小于甲的方差,說明乙的成績更穩(wěn)定;應(yīng)該選乙參加比賽.19、(1)單調(diào)遞增區(qū)間為;單調(diào)減區(qū)間為和;(2);.【解析】(1)求出導(dǎo)函數(shù),令,求出單調(diào)遞增區(qū)間;令,求出單調(diào)遞減區(qū)間.(2)求出函數(shù)的單調(diào)區(qū)間,利用函數(shù)的單調(diào)性即可求解.【詳解】1函數(shù)的定義域是R,,令,解得令,解得或,所以的單調(diào)遞增區(qū)間為,單調(diào)減區(qū)間為和;2由在單調(diào)遞減,在單調(diào)遞增,所以,而,,故最大值是.20、答案見解析【解析】由已知條件可得,假設(shè)時,取最小值,則,若補充條件是①,則可求得,代入化簡可求出的取值范圍,從而可求得答案,若補充條件是②,則可得,該數(shù)列是遞減數(shù)列,所以不存在k,使得取最小值,若補充條件是③,則可得,代入化簡可求出的取值范圍,從而可求得答案,【詳解】解:等差數(shù)列的公差為d,當(dāng)時,,得,從而,當(dāng)時,得,所以數(shù)列是首項為,公比為的等比數(shù)列,所以,由對任意,都有,當(dāng)?shù)炔顢?shù)列的前n項和存在最小值時,假設(shè)時,取最小值,所以;若補充條件是①,因為,,從而,由得,所以,由等差數(shù)列的前n項和存在最小值,則,得,又,所以.所以,故實數(shù)的取值范圍為若補充條件是②,由,即,又,所以.所以,由于該數(shù)列是遞減數(shù)列,所以不存在k,使得取最小值,故實數(shù)不存在以下為嚴(yán)格的證明:由等差數(shù)列的前n項和存在最小值,則,得,所以,所以不存在k,使得取最小值,故實數(shù)不存在若補充條件是③,由,得,又,所以,所以由等差數(shù)列的前n項和存在最小值,則,得,又,所以.所以存在,使得取最小值,所以,故實數(shù)的取值范圍為21、(1)(2)直線過定點;理由見解析【解析】(1)根據(jù)題意可求得,進(jìn)而求得橢圓方程;(2)考慮直線斜率是否存在,設(shè)直線方程并聯(lián)立橢圓方程,得到根與系數(shù)的關(guān)系式,然后利用,將根與系數(shù)的關(guān)系式代入化簡得到,結(jié)合直線方程,化簡可得結(jié)論.【小問1詳解】依題意,,所以,故橢圓方程為:【小問2詳解】當(dāng)直線MN的斜率不存在時,設(shè)M(),N(,),則,,此時M,N
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 現(xiàn)代物流信息系統(tǒng)建設(shè)中的標(biāo)準(zhǔn)化問題
- 生態(tài)文明教育在校園的實踐與推廣
- 現(xiàn)代企業(yè)綜合管理能力提升及領(lǐng)導(dǎo)力培訓(xùn)方案研究報告
- 2023三年級語文上冊 第一單元 習(xí)作:猜猜他是誰說課稿 新人教版
- Unit 2 AnimaIs Lesson 1 Enjoy the story(說課稿)-2024-2025學(xué)年北師大版(三起)英語五年級上冊
- 2024秋八年級物理上冊 第1章 機械運動 第2節(jié) 運動的描述說課稿2(新版)新人教版
- 2025仿石漆施工合同
- 13蚯蚓的家 說課稿-2023-2024學(xué)年科學(xué)一年級下冊青島版
- 2025農(nóng)副產(chǎn)品購銷結(jié)合合同樣本
- 2024-2025學(xué)年新教材高中英語 Unit 5 On the road預(yù)習(xí) 新知早知道1說課稿 外研版必修第二冊
- 口腔種植術(shù)單病種質(zhì)控查檢表
- 中日勞務(wù)合同范本
- 白宮-人工智能行業(yè):美國人工智能權(quán)利法案藍(lán)圖(英譯中)
- 營口市大學(xué)生??紝U锌荚囌骖}2022
- 典范英語8-15Here comes trouble原文翻譯
- 六安市葉集化工園區(qū)污水處理廠及配套管網(wǎng)一期工程環(huán)境影響報告書
- 運動技能學(xué)習(xí)與控制課件第一章運動技能學(xué)習(xí)與控制概述
- 固體廢棄物檢查記錄
- 工程設(shè)計費取費標(biāo)準(zhǔn)
- 2023年遼寧鐵道職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析
- CAPP教學(xué)講解課件
評論
0/150
提交評論