版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
云南省昆明市2025屆高二上數(shù)學(xué)期末質(zhì)量檢測試題注意事項(xiàng)1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.雙曲線:的實(shí)軸長為()A. B.C.4 D.22.在中,角,,所對的邊分別為,,,若,,,則A. B.2C.3 D.3.東漢末年的數(shù)學(xué)家趙爽在《周髀算經(jīng)》中利用一副“弦圖”,根據(jù)面積關(guān)系給出了勾股定理的證明,后人稱其為“趙爽弦圖”.如圖1,它由四個(gè)全等的直角三角形與一個(gè)小正方形拼成的一個(gè)大正方形.我們通過類比得到圖2,它是由三個(gè)全等的鈍角三角形與一個(gè)小等邊三角形拼成的一個(gè)大等邊三角形.對于圖2.下列結(jié)論正確的是()①這三個(gè)全等的鈍角三角形不可能是等腰三角形;②若,,則;③若,則;④若是的中點(diǎn),則三角形的面積是三角形面積的7倍.A.①②④ B.①②③C.②③④ D.①③④4.拋物線C:的焦點(diǎn)為F,P,R為C上位于F右側(cè)的兩點(diǎn),若存在點(diǎn)Q使四邊形PFRQ為正方形,則()A. B.C. D.5.已知隨機(jī)變量服從正態(tài)分布,,則()A. B.C. D.6.定義在R上的函數(shù)與函數(shù)在上具有相同的單調(diào)性,則k的取值范圍是()A. B.C. D.7.在各項(xiàng)均為正數(shù)的等比數(shù)列中,若,則()A.6 B.12C.56 D.788.若不等式組表示的區(qū)域?yàn)?,不等式表示的區(qū)域?yàn)?,向區(qū)域均勻隨機(jī)撒顆芝麻,則落在區(qū)域中的芝麻數(shù)約為()A. B.C. D.9.?dāng)?shù)列,則是這個(gè)數(shù)列的第()A.項(xiàng) B.項(xiàng)C.項(xiàng) D.項(xiàng)10.已知斜率為1的直線與橢圓相交于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn),AB的中點(diǎn)為P,若直線OP的斜率為,則橢圓C的離心率為()A. B.C. D.11.已知橢圓和雙曲線有共同焦點(diǎn),是它們一個(gè)交點(diǎn),且,記橢圓和雙曲線的離心率分別為,則的最大值為A.3 B.2C. D.12.某汽車制造廠分別從A,B兩類輪胎中各隨機(jī)抽取了6個(gè)進(jìn)行測試,下面列出了每一個(gè)輪胎行駛的最遠(yuǎn)里程(單位:)A類輪胎:94,96,99,99,105,107B類輪胎:95,95,98,99,104,109根據(jù)以上數(shù)據(jù),下列說法正確的是()A.A類輪胎行駛的最遠(yuǎn)里程的眾數(shù)小于B類輪胎行駛的最遠(yuǎn)里程的眾數(shù)B.A類輪胎行駛的最遠(yuǎn)里程的極差等于B類輪胎行駛的最遠(yuǎn)里程的極差C.A類輪胎行駛的最遠(yuǎn)里程的平均數(shù)大于B類輪胎行駛的最遠(yuǎn)里程的平均數(shù)D.A類輪胎的性能更加穩(wěn)定二、填空題:本題共4小題,每小題5分,共20分。13.,若2是與的等比中項(xiàng),則的最小值為___________.14.?dāng)?shù)列的前項(xiàng)和為,則的通項(xiàng)公式為________.15.已知橢圓的左、右頂點(diǎn)分別為A,B,橢圓C的左、右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)為橢圓C的下頂點(diǎn),直線MA與MB的斜率之積為.(1)求橢圓C的方程;(2)設(shè)點(diǎn)P,Q為橢圓C上位于x軸下方的兩點(diǎn),且,求四邊形面積的最大值.16.函數(shù)y=x3+ax2+bx+a2在x=1處有極值10,則a=________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標(biāo)系xOy中,橢圓C:(a>b>0)的左、右焦點(diǎn)分別為,其離心率,且橢圓C經(jīng)過點(diǎn).(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)過點(diǎn)M作兩條不同的直線與橢圓C分別交于點(diǎn)A,B(均異于點(diǎn)M).若∠AMB的角平分線與y軸平行,試探究直線AB的斜率是否為定值?若是,請給予證明;若不是,請說明理由.18.(12分)(1)若在是減函數(shù),求實(shí)數(shù)m的取值范圍;(2)已知函數(shù)在R上無極值點(diǎn),求a的值.19.(12分)已知函數(shù).(1)當(dāng)時(shí),證明:存在唯一的零點(diǎn);(2)若,求實(shí)數(shù)的取值范圍.20.(12分)如圖,從參加環(huán)保知識競賽的學(xué)生中抽出60名,將其成績(均為整數(shù))整理后畫出的頻率分布直方圖如下:觀察圖形,回答下列問題:(1)[79.5,89.5)這一組的頻數(shù)、頻率分別是多少?(2)估計(jì)這次環(huán)保知識競賽的眾數(shù)、中位數(shù)、平均數(shù)是多少?21.(12分)已知數(shù)列的前項(xiàng)和分別是,滿足,,且.(1)求數(shù)列的通項(xiàng)公式;(2)若數(shù)列對任意都有恒成立,求.22.(10分)同時(shí)拋擲兩顆骰子,觀察向上點(diǎn)數(shù).(1)試表示“出現(xiàn)兩個(gè)1點(diǎn)”這個(gè)事件相應(yīng)的樣本空間的子集;(2)求出現(xiàn)兩個(gè)1點(diǎn)”的概率;(3)求“點(diǎn)數(shù)之和為7”的概率.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】根據(jù)雙曲線的幾何意義即可得到結(jié)果.【詳解】因?yàn)殡p曲線的實(shí)軸長為2a,而雙曲線中,,所以其實(shí)軸長為故選:A2、A【解析】利用正弦定理,可直接求出的值.【詳解】在中,由正弦定理得,所以,故選A.【點(diǎn)睛】本題考查利用正弦定理求邊,要記得正弦定理所適用的基本類型,考查計(jì)算能力,屬于基礎(chǔ)題3、A【解析】對于①,由三角形大邊對大角的性質(zhì)分析,對于②,根據(jù)題意利用正弦定理分析,對于③,利用余弦定理分析,對于④,利用三角形的面積公式分析判斷【詳解】對于①,根據(jù)題意,圖2,它是由三個(gè)全等的鈍角三角形與一個(gè)小等邊三角形拼成的一個(gè)大等邊三角形,故,,所以這三個(gè)全等的鈍角三角形不可能是等腰三角形,故①正確;對于②,由題知,在中,,,,所以,所以由正弦定理得解得,因?yàn)?,所以,故②正確;對于③,不妨設(shè),所以在中,由余弦定理得,代入數(shù)據(jù)得,所以,所以,故③錯(cuò)誤;對于④,若是的中點(diǎn),則,所以,故④正確.故選:A第II卷(非選擇題4、A【解析】不妨設(shè),不妨設(shè),則,利用拋物線的對稱性及正方形的性質(zhì)列出的方程求得后可得結(jié)論【詳解】如圖所示,設(shè),不妨設(shè),則,由拋物線的對稱性及正方形的性質(zhì)可得,解得(正數(shù)舍去),所以故選:A5、B【解析】直接利用正態(tài)分布的應(yīng)用和密度曲線的對稱性的應(yīng)用求出結(jié)果【詳解】根據(jù)隨機(jī)變量服從正態(tài)分布,所以密度曲線關(guān)于直線對稱,由于,所以,所以,則,所以故選:B.【點(diǎn)睛】本題考查的知識要點(diǎn):正態(tài)分布的應(yīng)用,主要考查學(xué)生的運(yùn)算能力和轉(zhuǎn)換能力及思維能力,屬于基礎(chǔ)題6、B【解析】判定函數(shù)單調(diào)性,再利用導(dǎo)數(shù)結(jié)合函數(shù)在的單調(diào)性列式計(jì)算作答.【詳解】由函數(shù)得:,當(dāng)且僅當(dāng)時(shí)取“=”,則在R上單調(diào)遞減,于是得函數(shù)在上單調(diào)遞減,即,,即,而在上單調(diào)遞減,當(dāng)時(shí),,則,所以k的取值范圍是.故選:B7、D【解析】由等比數(shù)列的性質(zhì)直接求得.【詳解】在等比數(shù)列中,由等比數(shù)列的性質(zhì)可得:由,解得:;由可得:,所以.故選:D8、A【解析】作出兩平面區(qū)域,計(jì)算兩區(qū)域的公共面積,利用幾何概型得出芝麻落在區(qū)域Γ內(nèi)的概率,進(jìn)而可得答案.【詳解】作出不等式組所表示的平面區(qū)域如下圖中三角形ABC及其內(nèi)部,不等式表示的區(qū)域如下圖中的圓及其內(nèi)部:由圖可得,A點(diǎn)坐標(biāo)為點(diǎn)坐標(biāo)為坐標(biāo)為點(diǎn)坐標(biāo)為.區(qū)域即的面積為,區(qū)域的面積為圓的面積,即,其中區(qū)域和區(qū)域不相交的部分面積即空白面積,所以區(qū)域和區(qū)域相交的部分面積,所以落入?yún)^(qū)域的概率為.所以均勻隨機(jī)撒顆芝麻,則落在區(qū)域中芝麻數(shù)約為.故選:A.9、A【解析】根據(jù)數(shù)列的規(guī)律,求出通項(xiàng)公式,進(jìn)而求出是這個(gè)數(shù)列的第幾項(xiàng)【詳解】數(shù)列為,故通項(xiàng)公式為,是這個(gè)數(shù)列的第項(xiàng).故選:A.10、B【解析】這是中點(diǎn)弦問題,注意斜率與橢圓a,b之間的關(guān)系.【詳解】如圖:依題意,假設(shè)斜率為1的直線方程為:,聯(lián)立方程:,解得:,代入得,故P點(diǎn)坐標(biāo)為,由題意,OP的斜率為,即,化簡得:,,,;故選:B.11、D【解析】設(shè)橢圓長半軸長為a1,雙曲線的半實(shí)軸長a2,焦距2c.根據(jù)橢圓及雙曲線的定義可以用a1,a2表示出|PF1|,|PF2|,在△F1PF2中根據(jù)余弦定理可得到,利用基本不等式可得結(jié)論【詳解】如圖,設(shè)橢圓的長半軸長為a1,雙曲線的半實(shí)軸長為a2,則根據(jù)橢圓及雙曲線的定義:|PF1|+|PF2|=2a1,|PF1|﹣|PF2|=2a2,∴|PF1|=a1+a2,|PF2|=a1﹣a2,設(shè)|F1F2|=2c,∠F1PF2=,則:在△PF1F2中,由余弦定理得,4c2=(a1+a2)2+(a1﹣a2)2﹣2(a1+a2)(a1﹣a2)cos∴化簡得:a12+3a22=4c2,該式可變成:,∴≥2∴,故選D【點(diǎn)睛】本題考查圓錐曲線的共同特征,考查通過橢圓與雙曲線的定義求焦點(diǎn)三角形三邊長,考查利用基本不等式求最值問題,屬于中檔題12、D【解析】根據(jù)眾數(shù)、極差、平均數(shù)和方差的定義以及計(jì)算公式即可求解.【詳解】解:對A:A類輪胎行駛的最遠(yuǎn)里程的眾數(shù)為99,B類輪胎行駛的最遠(yuǎn)里程的眾數(shù)為95,選項(xiàng)A錯(cuò)誤;對B:A類輪胎行駛的最遠(yuǎn)里程的極差為13,B類輪胎行駛的最遠(yuǎn)里程的極差為14,選項(xiàng)B錯(cuò)誤對C:A類輪胎行駛的最遠(yuǎn)里程的平均數(shù)為,B類輪胎行駛的最遠(yuǎn)里程的平均數(shù)為,選項(xiàng)C錯(cuò)誤對D:A類輪胎行駛的最遠(yuǎn)里程的方差為,B類輪胎行駛的最遠(yuǎn)里程的方差為,故A類輪胎的性能更加穩(wěn)定,選項(xiàng)D正確故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、3【解析】根據(jù)等比中項(xiàng)列方程,結(jié)合基本不等式求得的最小值.【詳解】由題可得,則,當(dāng)且僅當(dāng)時(shí)等號成立.故答案為:14、【解析】討論和兩種情況,進(jìn)而利用求得答案.【詳解】由題意,時(shí),,時(shí),,則,于是,故答案為:15、(1)(2)【解析】(1)由斜率之積求得,再由已知條件得,從而得橢圓方程;(2)延長QF2交橢圓于N點(diǎn),連接,,設(shè)直線,,.直線方程代入橢圓方程,應(yīng)用韋達(dá)定理得,結(jié)合不等式的性質(zhì)、函數(shù)的單調(diào)性可得的范圍,再計(jì)算出四邊形面積得結(jié)論【小問1詳解】由題知:,,,又,∴橢圓.【小問2詳解】延長QF2交橢圓于N點(diǎn),連接,,如下圖所示:,∴設(shè)直線,,.由,得,,,.,由勾形函數(shù)的單調(diào)性得,根據(jù)對稱性得:,且,,∴四邊形面積的最大值為.16、4【解析】∵y′=3x2+2ax+b,∴或當(dāng)a=-3,b=3時(shí),y′=3x2-6x+3=3(x-1)2≥0恒成立,故舍去.所以a=4三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)是,證明見解析【解析】(1)根據(jù)離心率及橢圓上的點(diǎn)可求解;(2)根據(jù)題意分別設(shè)出直線MA、MB,與橢圓聯(lián)立后得到相關(guān)點(diǎn)的坐標(biāo),再通過斜率公式計(jì)算即可證明.【小問1詳解】由,得,所以a2=9b2①,又橢圓過點(diǎn),則②,由①②解得a=6,b=2,所以橢圓的標(biāo)準(zhǔn)方程為【小問2詳解】設(shè)直線MA的斜率為k,點(diǎn),因?yàn)椤螦MB的平分線與y軸平行,所以直線MA與MB的斜率互為相反數(shù),則直線MB的斜率為-k.聯(lián)立直線MA與橢圓方程,得整理,得,所以,同理可得,所以,又所以為定值.18、(1);(2)1【解析】(1)將問題轉(zhuǎn)化為在內(nèi)恒成立,求出的最小值,即可得到答案;(2)對函數(shù)求導(dǎo)得,由,即可得到答案;【詳解】(1)依題意知,在內(nèi)恒成立,所以在內(nèi)恒成立,所以,因?yàn)榈淖钚≈禐?,所以,所以實(shí)數(shù)m的取值范圍是.(2),依題意有,即,,解得.19、(1)證明見解析;(2)【解析】(1)當(dāng)時(shí),求導(dǎo)得到,判斷出函數(shù)的單調(diào)性,求出最值,可證得命題成立;(2)當(dāng)且時(shí),不滿足題意,故,又定義域?yàn)?,講不等式化簡,參變分離后構(gòu)造新函數(shù),求導(dǎo)判斷單調(diào)性并求出最值,可得實(shí)數(shù)的取值范圍【詳解】(1)函數(shù)的定義域?yàn)?,?dāng)時(shí),由,當(dāng)時(shí),,單調(diào)遞減;當(dāng)時(shí),,單調(diào)遞增;.且,故存在唯一的零點(diǎn);(2)當(dāng)時(shí),不滿足恒成立,故由定義域?yàn)?,可得,令,則,則當(dāng)時(shí),,函數(shù)單調(diào)遞增,當(dāng)時(shí),,函數(shù)單調(diào)遞減,故當(dāng)時(shí),函數(shù)取得最大值(1),故實(shí)數(shù)的取值范圍是【點(diǎn)睛】方法點(diǎn)睛:本題考查函數(shù)零點(diǎn)的問題,考查導(dǎo)數(shù)的應(yīng)用,考查不等式的恒成立問題,關(guān)于恒成立問題的幾種常見解法總結(jié)如下:
參變分離法,將不等式恒成立問題轉(zhuǎn)化函數(shù)求最值問題;
主元變換法,把已知取值范圍的變量作為主元,把求取值范圍的變量看作參數(shù);
分類討論,利用函數(shù)的性質(zhì)討論參數(shù),分別判斷單調(diào)性求出最值;
數(shù)形結(jié)合法,將不等式兩端的式子分別看成兩個(gè)函數(shù),作出函數(shù)圖象,列出參數(shù)的不等式求解20、(1)0.25,15;(2)眾數(shù)為74.5,中位數(shù)為72.8,平均分為70.5.【解析】(1)直接利用頻率和頻數(shù)公式求解;(2)利用頻率分布直方圖的公式求眾數(shù)、中位數(shù)、平均數(shù).【詳解】(1)頻率=(89.5-79.5)×0.025=0.25;頻數(shù)=60×0.25=15.(2)[69.5,79.5)一組的頻率最大,人數(shù)最多,則眾數(shù)為74.5,左邊三個(gè)矩形的面積和為0.4,左邊四個(gè)矩形的面積和為0.7,所以中位數(shù)在第4個(gè)矩形中,設(shè)中位數(shù)為,所以中位數(shù)為72.8.平均分為44.5×0.1+54.5×0.15+64.5×0.15+74.5×0.3+84.5×0.25+94.5×0.05=70.521、(1),(2)【解析】(1)根據(jù)已知遞推關(guān)系式再寫一式,然后兩式相減,由等差數(shù)列、等比數(shù)列的定義即可求解;(2)根據(jù)已知遞推關(guān)系式再寫一式,然后兩式相減,求出,最后利用錯(cuò)位相減法即可得答案.【小問1詳解】解:因?yàn)?,,所以,,得,所以是?為首項(xiàng)2為公差的等差數(shù)列,是以1為首項(xiàng)2為公差的等差數(shù)列,所以,,所以;因?yàn)?,所以,又由得,所以是?為首項(xiàng)2為公比的等比數(shù)列,所以.【小問2詳解】解:當(dāng)時(shí),,當(dāng)時(shí),,得,即,記,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版班班通設(shè)備與物聯(lián)網(wǎng)結(jié)合合同2篇
- 二零二五年綠色生態(tài)住宅小區(qū)消防工程設(shè)計(jì)與施工合同3篇
- 二零二五版股份制企業(yè)股份自愿轉(zhuǎn)讓與投資者關(guān)系維護(hù)合同3篇
- 二零二五年度監(jiān)理合同延期補(bǔ)充協(xié)議-責(zé)任劃分與風(fēng)險(xiǎn)承擔(dān)3篇
- 二零二五版中央空調(diào)清洗保養(yǎng)及能耗管理服務(wù)合同3篇
- 二零二五年度國有資產(chǎn)管理委托服務(wù)合同2篇
- 二零二五版股票質(zhì)押擔(dān)保合同范本編制與解析3篇
- 二零二五年度風(fēng)力發(fā)電項(xiàng)目融資合同2篇
- 二零二五年美發(fā)師國際交流聘用合同2篇
- 二零二五年度酒店地毯翻新與維護(hù)服務(wù)合同范本3篇
- 五年級上冊小數(shù)乘除豎式計(jì)算題200道及答案
- 2024年東南亞工業(yè)氣瓶市場深度研究及預(yù)測報(bào)告
- 棉花良種選育與遺傳育種
- 簡易勞務(wù)承包合同范本
- SH/T 3078-2024 立式圓筒形料倉工程設(shè)計(jì)規(guī)范(正式版)
- 快遞驛站承包協(xié)議書
- 基于視覺果蔬識別的稱重系統(tǒng)設(shè)計(jì)
- 體育初中學(xué)生學(xué)情分析總結(jié)報(bào)告
- 部編版語文中考必背文言文7-9年級
- 農(nóng)藥合成研發(fā)項(xiàng)目流程
- 國家職業(yè)技術(shù)技能標(biāo)準(zhǔn) 4-04-04-02 網(wǎng)絡(luò)與信息安全管理員(數(shù)據(jù)安全管理員)S 2024年版
評論
0/150
提交評論