廣東省汕頭市潮陽啟聲高中2025屆高二數(shù)學第一學期期末檢測模擬試題含解析_第1頁
廣東省汕頭市潮陽啟聲高中2025屆高二數(shù)學第一學期期末檢測模擬試題含解析_第2頁
廣東省汕頭市潮陽啟聲高中2025屆高二數(shù)學第一學期期末檢測模擬試題含解析_第3頁
廣東省汕頭市潮陽啟聲高中2025屆高二數(shù)學第一學期期末檢測模擬試題含解析_第4頁
廣東省汕頭市潮陽啟聲高中2025屆高二數(shù)學第一學期期末檢測模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

廣東省汕頭市潮陽啟聲高中2025屆高二數(shù)學第一學期期末檢測模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若兩條平行線與之間的距離是2,則m的值為()A.或11 B.或10C.或12 D.或112.在棱長為4的正方體中,為的中點,點P在正方體各棱及表面上運動且滿足,則點P軌跡圍成的圖形的面積為()A. B.C. D.3.2020年12月4日,嫦娥五號探測器在月球表面第一次動態(tài)展示國旗.1949年公布的《國旗制法說明》中就五星的位置規(guī)定:大五角星有一個角尖正向上方,四顆小五角星均各有一個角尖正對大五角星的中心點.有人發(fā)現(xiàn),第三顆小星的姿態(tài)與大星相近.為便于研究,如圖,以大星的中心點為原點,建立直角坐標系,,,,分別是大星中心點與四顆小星中心點的聯(lián)結(jié)線,,則第三顆小星的一條邊AB所在直線的傾斜角約為()A. B.C. D.4.若函數(shù),則單調(diào)增區(qū)間為()A. B.C. D.5.若直線與圓相交于、兩點,且(其中為原點),則的值為()A. B.C. D.6.直線l經(jīng)過兩條直線和的交點,且平行于直線,則直線l的方程為()A. B.C. D.7.如圖,在正方體中,E為的中點,則直線與平面所成角的正弦值為()A. B.C. D.8.已知橢圓C:的左右焦點為F1,F(xiàn)2,離心率為,過F2的直線l交C與A,B兩點,若△AF1B的周長為,則C的方程為()A. B.C. D.9.在等差數(shù)列中,,,則數(shù)列的公差為()A.1 B.2C.3 D.410.已知拋物線上一點M與焦點間的距離是3,則點M的縱坐標為()A.1 B.2C.3 D.411.已知點,Q是圓上的動點,則線段長的最小值為()A.3 B.4C.5 D.612.閱讀程序框圖,該算法的功能是輸出A.數(shù)列的第4項 B.數(shù)列的第5項C.數(shù)列的前4項的和 D.數(shù)列的前5項的和二、填空題:本題共4小題,每小題5分,共20分。13.在梯形中,,,.將梯形繞所在的直線旋轉(zhuǎn)一周而形成的曲面所圍成的幾何體的體積為______.14.已知向量,,,若,則____________.15.已知函數(shù),則曲線在點處的切線方程為______.16.已知拋物線C:,經(jīng)過點P(4,1)的直線l與拋物線C相交于A,B兩點,且點P恰為AB的中點,F(xiàn)為拋物線的焦點,則______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線的焦點為,直線與拋物線的準線交于點,為坐標原點,(1)求拋物線的方程;(2)直線與拋物線交于,兩點,求的面積18.(12分)已知曲線上任意一點滿足方程,(1)求曲線的方程;(2)若直線與曲線在軸左、右兩側(cè)的交點分別是,且,求的最小值.19.(12分)已知各項均為正數(shù)的等比數(shù)列的前n項和為,且,(1)求數(shù)列的通項公式;(2)設,求數(shù)列的前n項和20.(12分)已知圓C的圓心在x軸上,且經(jīng)過點,.(1)求圓C的標準方程;(2)過斜率為的直線與圓C相交于M,N,兩點,求弦MN的長.21.(12分)如圖,點О是正四棱錐的底面中心,四邊形PQDO矩形,(1)點B到平面APQ的距離:(2)設E為棱PC上的點,且,若直線DE與平面APQ所成角的正弦值為,試求實數(shù)的值22.(10分)如圖,分別是橢圓C:的左,右焦點,點P在橢圓C上,軸,點A是橢圓與x軸正半軸的交點,點B是橢圓與y軸正半軸的交點,且,.(1)求橢圓C的方程;(2)已知M,N是橢圓C上的兩點,若點,,試探究點M,,N是否一定共線?說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】利用平行線間距離公式進行求解即可.【詳解】因為兩條平行線與之間的距離是2,所以,或,故選:A2、A【解析】構(gòu)造輔助線,找到點P軌跡圍成的圖形為長方形,從而求出面積.【詳解】取的中點E,的中點F,連接BE,EF,AF,則由于為的中點,可得,所以∠CBE=∠ECN,從而∠BCN+∠CBE=∠BCN+∠ECN=90°,所以BE⊥CN,又EF⊥平面,平面,所以EF⊥CN,又因為BEEF=E,所以CN⊥平面ABEF,所以點P軌跡圍成的圖形為矩形ABEF,又,所以矩形ABEF面積為.故選:A3、C【解析】由五角星的內(nèi)角為,可知,又平分第三顆小星的一個角,過作軸平行線,則,即可求出直線的傾斜角.【詳解】都為五角星的中心點,平分第三顆小星的一個角,又五角星的內(nèi)角為,可知,過作軸平行線,則,所以直線的傾斜角為,故選:C【點睛】關鍵點點睛:本題考查直線傾斜角,解題的關鍵是通過做輔助線找到直線的傾斜角,通過幾何關系求出傾斜角,考查學生的數(shù)形結(jié)合思想,屬于基礎題.4、C【解析】求出導函數(shù),令解不等式即可得答案.【詳解】解:因為函數(shù),所以,令,得,所以的單調(diào)增區(qū)間為,故選:C.5、D【解析】分析出為等腰直角三角形,可得出原點到直線的距離,利用點到直線的距離公式可得出關于的等式,由此可解得的值.【詳解】圓的圓心為原點,由于且,所以,為等腰直角三角形,且圓心到直線的距離為,由點到直線的距離公式可得,解得.故選:D.【點睛】關鍵點點睛:本題考查利用圓周角求參數(shù),解題的關鍵在于求出弦心距,再利用點到直線的距離公式列方程求解參數(shù).6、B【解析】聯(lián)立已知兩條直線方程求出交點,再根據(jù)兩直線平行則斜率相同求出斜率即可.【詳解】由得兩直線交點為(-1,0),直線l斜率與相同,為,則直線l方程為y-0=(x+1),即x-2y+1=0.故選:B.7、D【解析】構(gòu)建空間直角坐標系,求直線的方向向量、平面的法向量,應用空間向量的坐標表示,求直線與平面所成角的正弦值.【詳解】以點D為坐標原點,向量分別為x,y,z軸建立空間直角坐標系,則,,,,可得,,,設面的法向量為,有,取,則,所以,,,則直線與平面所成角的正弦值為故選:D.8、A【解析】根據(jù)橢圓的定義可得△AF1B的周長為4a,由題意求出a,結(jié)合離心率計算即可求出c,再求出b即可.【詳解】由橢圓的定義知,△AF1B的周長為,又△AF1B的周長為4,則,,,,,所以方程為,故選:A.9、B【解析】將已知條件轉(zhuǎn)化為的形式,由此求得.【詳解】在等差數(shù)列中,設公差為d,由,,得,解得.故選:B10、B【解析】利用拋物線的定義求解即可【詳解】拋物線的焦點為,準線方程為,因為拋物線上一點M與焦點間的距離是3,所以,得,即點M的縱坐標為2,故選:B11、A【解析】根據(jù)圓的幾何性質(zhì)轉(zhuǎn)化為圓心與點的距離加上半徑即可得解.【詳解】圓的圓心為,半徑為,所以,圓上點在線段上時,,故選:A12、B【解析】分析:模擬程序的運行,依次寫出每次循環(huán),直到滿足條件,退出循環(huán),輸出A的值即可詳解:模擬程序的運行,可得:

A=0,i=1執(zhí)行循環(huán)體,,

不滿足條件,執(zhí)行循環(huán)體,不滿足條件,執(zhí)行循環(huán)體,不滿足條件,執(zhí)行循環(huán)體,不滿足條件,執(zhí)行循環(huán)體,滿足條件,退出循環(huán),輸出A的值為31.觀察規(guī)律可得該算法的功能是輸出數(shù)列{}的第5項.所以B選項是正確的.點睛:模擬程序的運行,依次寫出每次循環(huán)得到的A,i的值,當i=6時滿足條件,退出循環(huán),輸出A的值,觀察規(guī)律即可得解.二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】畫出幾何體的直觀圖,利用已知條件,求解幾何體的體積即可【詳解】梯形ABCD:由題意可知空間幾何體的直觀圖如圖:旋轉(zhuǎn)體是底面半徑為1,高為2的圓柱,挖去一個相同底面高為1的圓錐,幾何體的體積為:故答案為:14、【解析】首先求出的坐標,再根據(jù)向量垂直得到,即可得到方程,解得即可;【詳解】解:因為向量,,,所以向量,因為,所以,即,解得故答案為:15、【解析】先求函數(shù)的導數(shù),再利用導數(shù)的幾何意義求函數(shù)在處的切線方程.【詳解】,,,所以曲線在點處的切線方程為,即.故答案為:【點睛】本題考查導數(shù)的幾何意義,重點考查計算能力,屬于基礎題型.16、9【解析】過A、、作準線的垂線且分別交準線于點、、,根據(jù)拋物線的定義可知,由梯形的中位線的性質(zhì)得出,進而可求出的結(jié)果.【詳解】由拋物線,可知,則,所以拋物線的焦點坐標為,如圖,過點A作垂直于準線交準線于,過點作垂直于準線交準線于,過點作垂直于準線交準線于,由拋物線的定義可得,再根據(jù)為線段的中點,而四邊形為梯形,由梯形的中位線可知,則,所以.故答案為:9.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)根據(jù)題意建立關于的方程,解得的值即可.(2)聯(lián)列方程組并消元,韋達定理整體思想求的長,再求點到直線的距離,進而求面積.【小問1詳解】由題意可得,,則,因為,所以,解得,故拋物線的方程為【小問2詳解】由(1)可知,則點到直線的距離聯(lián)立,整理得設,,則,從而因為直線過拋物線的焦點,所以故的面積為18、(1)(2)8【解析】(1)根據(jù)雙曲線的定義即可得出答案;(2)可設直線的方程為,則直線的方程為,由,求得,同理求得,從而可求得的值,再結(jié)合基本不等式即可得出答案.【小問1詳解】解:設,則,等價于,曲線為以為焦點的雙曲線,且實軸長為2,焦距為,故曲線的方程為:;【小問2詳解】解:由題意可得直線的斜率存在且不為0,可設直線的方程為,則直線的方程為,由,得,所以,同理可得,,所以,,當且僅當時取等號,所以當時,取得最小值8.19、(1)(2)【解析】(1)由等比數(shù)列的前項和公式,等比數(shù)列的基本量運算列方程組解得和公比后可得通項公式;(2)用錯位相減法求得和【小問1詳解】設數(shù)列的公比為q,由,,得,解之得所以;【小問2詳解】,又,得,,兩式作差,得,所以20、(1)(2)【解析】(1)由圓的性質(zhì)可得圓心在線段的垂直平分線上,由題意求出的垂直平分線方程,從而得出圓心坐標,再求出半徑,得到答案.(2)由題意先求出滿足條件的直線方程,求出圓心到直線的距離,由垂經(jīng)定理可得圓的弦長.【小問1詳解】由題意設圓C的標準方程為設的中點為,則,由圓的性質(zhì)可得則,又,所以則直線的方程為,即則圓C的圓心在直線上,即,故所以圓心,半徑所以圓C的標準方程為【小問2詳解】過斜率為的直線方程為:圓心到該直線的距離為所以21、(1)(2)或【解析】(1)以三棱錐等體積法求點到面距離,思路簡單快捷.(2)由直線DE與平面APQ所成角的正弦值為,可以列關于的方程,解之即可.【小問1詳解】點О是正四棱錐底面中心,點О是BD的中點,四邊形PQDO矩形,,兩點到平面APQ的距離相等.正四棱錐中,平面,平面,,,設點B到平面APQ的距離為d,則,即解之得,即點B到平面APQ的距離為【小問2詳解】取PC中點N,連接BN、ON、DN,則.平面平面正四棱錐中,,直線平面平面,平面平面,平面平面平面中,點E到直線ON的距離即為點E到平面的距離.中,,點P到直線ON的距離為△中,,設

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論