版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
吉林省長春市五中2025屆高二數(shù)學第一學期期末統(tǒng)考模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.給出如下四個命題正確的是()①方程表示的圖形是圓;②橢圓的離心率;③拋物線的準線方程是;④雙曲線的漸近線方程是A.③ B.①③C.①④ D.②③④2.設為數(shù)列的前n項和,,且滿足,若,則()A.2 B.3C.4 D.53.已知是等比數(shù)列,則()A.數(shù)列是等差數(shù)列 B.數(shù)列是等比數(shù)列C.數(shù)列是等差數(shù)列 D.數(shù)列是等比數(shù)列4.已知三個觀測點,在的正北方向,相距,在的正東方向,相距.在某次爆炸點定位測試中,兩個觀測點同時聽到爆炸聲,觀測點晚聽到,已知聲速為,則爆炸點與觀測點的距離是()A. B.C. D.5.直線與直線,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件6.某地為應對極端天氣搶險救災,需調(diào)用A,B兩種卡車,其中A型卡車x輛,B型卡車y輛,以備不時之需,若x和y滿足約束條件則最多需調(diào)用卡車的數(shù)量為()A.7 B.9C.13 D.147.為了解一片大約一萬株樹木的生長情況,隨機測量了其中100株樹木的底部周長(單位:㎝).根據(jù)所得數(shù)據(jù)畫出的樣本頻率分布直方圖如圖,那么在這片樹木中,底部周長小于110㎝的株樹大約是()A.3000 B.6000C.7000 D.80008.已知某地區(qū)7%的男性和0.49%的女性患色盲.假如男性、女性各占一半,從中隨機選一人,則此人恰是色盲的概率是()A.0.01245 B.0.05786C.0.02865 D.0.037459.2021年6月17日9時22分,搭載神舟十二號載人飛船的長征二號F遙十二運載火箭,在酒泉衛(wèi)星發(fā)射中心點火發(fā)射.此后,神舟十二號載人飛船與火箭成功分離,進入預定軌道,并快速完成與“天和”核心艙的對接,聶海勝、劉伯明、湯洪波3名宇航員成為核心艙首批“入住人員”,并在軌駐留3個月,開展艙外維修維護,設備更換,科學應用載荷等一系列操作.已知神舟十二號飛船的運行軌道是以地心為焦點的橢圓,設地球半徑為R,其近地點與地面的距離大約是,遠地點與地面的距離大約是,則該運行軌道(橢圓)的離心率大約是()A. B.C. D.10.設正數(shù)數(shù)列的前項和為,數(shù)列的前項積為,且,則()A. B.C. D.11.不等式的解集為()A. B.C.或 D.或12.命題若,且,則,命題在中,若,則.下列命題中為真命題的是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,正四棱錐的棱長均為2,點E為側棱PD的中點.若點M,N分別為直線AB,CE上的動點,則MN的最小值為______14.已知正四面體ABCD中,E,F(xiàn)分別是線段BC,AD的中點,點G是線段CD上靠近D的四等分點,則直線EF與AG所成角的余弦值為______15.橢圓與雙曲線有公共焦點,設橢圓與雙曲線在第一象限內(nèi)交于點,橢圓與雙曲線的離心率分別為為坐標原點,,則的取值范圍是___________.16.設為曲線上一點,,,若,則__________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的焦距為,離心率為(1)求橢圓方程;(2)設過橢圓頂點,斜率為的直線交橢圓于另一點,交軸于點,且,,成等比數(shù)列,求的值18.(12分)已知函數(shù),.(1)若,求曲線在點處的切線方程;(2)若函數(shù)在上是減函數(shù),求實數(shù)的取值范圍.19.(12分)已知數(shù)列的前項的和為,且.(1)求數(shù)列的通項公式;(2)設,求數(shù)列的前項和.20.(12分)如圖,已知平行六面體中,底面ABCD是邊長為1的正方形,,,設,,(1)用,,表示,并求;(2)求21.(12分)已知等差數(shù)列滿足:,.(1)求數(shù)列的通項公式;(2)若數(shù)列滿足:,,求數(shù)列的通項公式.22.(10分)設等差數(shù)列的前項和為,已知,.(1)求數(shù)列的通項公式;(2)求數(shù)列的前項和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】對選項①,根據(jù)圓一般方程求解即可判斷①錯誤,對選項②,求出橢圓離心率即可判斷②錯誤,對③,求出拋物線漸近線即可判斷③正確,對④,求出雙曲線漸近線方程即可判斷④錯誤?!驹斀狻繉τ冖龠x項,,,故①錯誤;對于②選項,由題知,所以,所以離心率,故②錯誤;對于③選項,拋物線化為標準形式得拋物線,故準線方程是,故③正確;對于④選項,雙曲線化為標準形式得,所以,焦點在軸上,故漸近線方程是,故④錯誤.故選:A2、B【解析】由已知條件可得數(shù)列為首項為2,公差為2的等差數(shù)列,然后根據(jù)結合等差數(shù)列的求和公式可求得答案【詳解】在等式中,令,可得,所以數(shù)列為首項為2,公差為2的等差數(shù)列,因為,所以,化簡得,,解得或(舍去),故選:B3、B【解析】取,可判斷AC選項;利用等比數(shù)列的定義可判斷B選項;取可判斷D選項.【詳解】若,則、無意義,A錯C錯;設等比數(shù)列的公比為,則,(常數(shù)),故數(shù)列是等比數(shù)列,B對;取,則,數(shù)列為等比數(shù)列,因為,,,且,所以,數(shù)列不是等比數(shù)列,D錯.故選:B.4、D【解析】根據(jù)題意作出示意圖,然后結合余弦定理解三角形即可求出結果.【詳解】設爆炸點為,由于兩個觀測點同時聽到爆炸聲,則點位于的垂直平分線上,又在的正東方向且觀測點晚聽到,則點位于的左側,,,,設,則,解得,則爆炸點與觀測點的距離為,故選:D.5、A【解析】根據(jù)直線與直線的垂直,列方程,求出,再判斷充分性和必要性即可.【詳解】解:若,則,解得或,即或,所以”是“充分不必要條件.故選:A.【點睛】本題考查直線一般式中直線與直線垂直的系數(shù)關系,考查充分性和必要性的判斷,是基礎題.6、B【解析】畫出約束條件的可行域,利用目標函數(shù)的幾何意義即可求解【詳解】設調(diào)用卡車的數(shù)量為z,則,其中x和y滿足約束條件,作出可行域如圖所示:當目標函數(shù)經(jīng)過時,縱截距最大,最大.故選:B7、C【解析】先由頻率分布直方圖得到抽取的樣本中底部周長小于110㎝的概率,進而可求出結果.【詳解】由頻率分布直方圖可得,樣本中底部周長小于110㎝的概率為,因此在這片樹木中,底部周長小于110㎝的株樹大約是.故選:C.【點睛】本題主要考查頻率分布直方圖的應用,屬于基礎題型.8、D【解析】設出事件,利用全概率公式進行求解.【詳解】用事件A,B分別表示隨機選1人為男性或女性,用事件C表示此人恰是色盲,則,且A,B互斥,故故選:D9、A【解析】以運行軌道長軸所在直線為x軸,地心F為右焦點建立平面直角坐標系,設橢圓方程為,根據(jù)題意列出方程組,解方程組即可.【詳解】以運行軌道長軸所在直線為x軸,地心F為右焦點建立平面直角坐標系,設橢圓方程為,其中,根據(jù)題意有,,所以,,所以橢圓的離心率故選:A10、B【解析】當可求得;當時,可證得數(shù)列為等差數(shù)列,利用等差數(shù)列通項公式可推導得到,由求得后,利用可求得結果.【詳解】當時,,解得:;當時,由得:,即,,數(shù)列是以為首項,為公差的等差數(shù)列,,解得:,,經(jīng)檢驗:滿足,,故選:B.11、A【解析】先將分式不等式轉化為一元二次不等式,然后求解即可【詳解】由,得,解得,所以原不等式的解集為,故選:A12、A【解析】根據(jù)不等式性質(zhì)及對數(shù)函數(shù)的單調(diào)性判斷命題的真假,根據(jù)大角對大邊及正弦定理可判斷命題的真假,再根據(jù)復合命題真假的判斷方法即可得出結論.【詳解】解:若,且,則,當時,,所以,當時,,所以,綜上命題為假命題,則為真命題,在中,若,則,由正弦定理得,所以命題為真命題,為假命題,所以為真命題,,,為假命題.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)題意,先建立空間直角坐標系,然后寫出相關點的坐標,再寫出相關的向量,然后根據(jù)點分別為直線上寫出點的坐標,這樣就得到,然后根據(jù)的取值范圍而確定【詳解】建立如圖所示的空間直角坐標系,則有:,,,,,可得:設,且則有:,可得:則有:故則當且僅當時,故答案為:14、【解析】建立空間直角坐標系,令正四面體的棱長為,即可求出點的坐標,從而求出異面直線所成角的余弦值;【詳解】解:如圖建立空間直角坐標系,令正四面體的棱長為,則,所以,所以,所以,,,,,設,因為,所以,所以,所以,,設直線與所成角為,則故答案為:15、【解析】根據(jù)橢圓和雙曲線得定義求得,再根據(jù),可得,從而有,求出的范圍,根據(jù),結合基本不等式即可得出答案.【詳解】解:設,則有,所以,即,又因為,所以,所以,即,則,由,得,所以,所以,則,由,得,因為,當且僅當,即時,取等號,因為,所以,所以,即,所以的取值范圍是.故答案為:.16、4【解析】化簡曲線方程,得到雙曲線的一支,結合雙曲線定義求出結果【詳解】由,得,即,故為雙曲線右支上一點,且分別為該雙曲線的左、右焦點,則,.【點睛】本題考查了雙曲線的定義,解題時要先化簡曲線方程,然后再結合雙曲線定義求出結果,較為基礎三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)由焦距為,離心率為結合性質(zhì),列出關于的方程組,求出從而求出橢圓方程;(2)設出直線方程,代入橢圓方程,求出點D、E的坐標,然后利用|BD|,|BE|,|DE|成等比數(shù)列,即可求解【詳解】(1)由已知,,解得,所以橢圓的方程為(2)由(1)得過點的直線為,由,得,所以,所以,依題意,因為,,成等比數(shù)列,所以,所以,即,當時,,無解,當時,,解得,所以,解得,所以,當,,成等比數(shù)列時,【點睛】方法點睛(1)求橢圓方程的常用方法:①待定系數(shù)法;②定義法;③相關點法(2)直線與圓錐曲線的綜合問題,常將直線方程代入圓錐曲線方程,從而得到關于(或)的一元二次方程,設出交點坐標),利用韋達定理得出坐標的關系,同時注意判別式大于零求出參數(shù)的范圍(或者得到關于參數(shù)的不等關系),然后將所求轉化到參數(shù)上來再求解.如本題及,聯(lián)立即可求解.注意圓錐曲線問題中,常參數(shù)多、字母多、運算繁瑣,應注意設而不求的思想、整體思想的應用.屬于中檔題.18、(1).(2).【解析】分析:(1)由和可由點斜式得切線方程;(2)由函數(shù)在上是減函數(shù),可得在上恒成立,,由二次函數(shù)的性質(zhì)可得解.詳解:(1)當時,所以,所以曲線在點處的切線方程為.(2)因為函數(shù)在上是減函數(shù),所以在上恒成立.做法一:令,有,得故.實數(shù)的取值范圍為做法二:即在上恒成立,則在上恒成立,令,顯然在上單調(diào)遞減,則,得實數(shù)的取值范圍為點睛:導數(shù)問題經(jīng)常會遇見恒成立的問題:(1)根據(jù)參變分離,轉化為不含參數(shù)的函數(shù)的最值問題;(2)若就可討論參數(shù)不同取值下的函數(shù)的單調(diào)性和極值以及最值,最終轉化為,若恒成立;(3)若恒成立,可轉化為(需在同一處取得最值).19、(1);(2).【解析】(1)根據(jù),并結合等比數(shù)列的定義即可求得答案;(2)結合(1),并通過錯位相減法即可求得答案.【小問1詳解】當時,,當時,,是以2為首項,2為公比的等比數(shù)列,.【小問2詳解】,…①…②①-②得,.20、(1),(2)0【解析】(1)把,,作為基底,利用空間向量基本定理表示,然后根據(jù)已知的數(shù)據(jù)求,(2)先把用基底表示,然后化簡求解【小問1詳解】因為,,,,所以,因為底面ABCD是邊長為1的正方形,,,所以【小問2詳解】因為,底面ABCD是邊
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 勤工助學工作總結15篇
- 酒店實習報告模板錦集10篇
- 愛話題作文15篇
- 紋身操作手法課程設計
- 高中信息技術 鍵盤和鍵盤操作教案
- DB2301T 193-2024林糧間作技術規(guī)程
- 動脈導管未閉課件
- 借證協(xié)議書(2篇)
- 兒童故事版權使用合同(2篇)
- 婦幼保健計劃生育服務中心傳染病衛(wèi)生應急預案
- DB63-T 1672-2018+瀝青路面整治工程新舊路面聯(lián)結層技術規(guī)范
- 基于CAN通訊的儲能變流器并機方案及應用分析報告-培訓課件
- 園藝療法共課件
- 布氏、韋氏、洛氏硬度換算表
- 鋼筋混凝土地下通道課程設計
- 韓流對中國文化的影響課件
- 檢驗檢測服務公司市場營銷計劃
- 醫(yī)務人員外出進修流程圖
- DB32∕T 2349-2013 楊樹一元立木材積表
- 昌樂二中271高效課堂培訓與評價ppt課件
- 豬場名詞及指標講義
評論
0/150
提交評論