江蘇省天星湖中學(xué)2025屆高一數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測試試題含解析_第1頁
江蘇省天星湖中學(xué)2025屆高一數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測試試題含解析_第2頁
江蘇省天星湖中學(xué)2025屆高一數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測試試題含解析_第3頁
江蘇省天星湖中學(xué)2025屆高一數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測試試題含解析_第4頁
江蘇省天星湖中學(xué)2025屆高一數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測試試題含解析_第5頁
已閱讀5頁,還剩9頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

江蘇省天星湖中學(xué)2025屆高一數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測試試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.函數(shù)f(x)=ln(-x)-x-2的零點所在區(qū)間為()A.(-3,-e) B.(-4,-3)C.(-e,-2) D.(-2,-1)2.已知函數(shù),若正數(shù),,滿足,則()A.B.C.D.3.設(shè)函數(shù),若關(guān)于的方程有四個不同的解,,,,且,則的取值范圍是()A. B.C. D.4.已知圓,圓,則兩圓的位置關(guān)系為A.相離 B.相外切C.相交 D.相內(nèi)切5.兩平行直線l1:3x+2y+1=0與l2:6mx+4y+m=0之間的距離為A.0 B.C. D.6.已知函數(shù),若,則恒成立時的范圍是()A. B.C. D.7.設(shè)為大于1的正數(shù),且,則,,中最小的是A. B.C. D.三個數(shù)相等8.已知向量,向量,則的最大值,最小值分別是()A.,0 B.4,C.16,0 D.4,09.設(shè)方程的解為,則所在的區(qū)間是A. B.C. D.10.若則A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知直線與圓C:相交于A,B兩點,則|AB|=____________12.集合的子集個數(shù)為______13.已知水平放置的△ABC按“斜二測畫法”得到如圖所示的直觀圖,其中B′O′=C′O′=2,∠B'A'C'=90°,則原△ABC的面積為______14.函數(shù)是奇函數(shù),則實數(shù)__________.15.已知直線過兩直線和的交點,且原點到該直線的距離為,則該直線的方程為_____.16.已知集合,,則___________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.設(shè)函數(shù).(1)求函數(shù)在上的最小值;(2)若方程在上有四個不相等實根,求的范圍.18.已知非空集合,.(1)當(dāng)時,求,;(2)若“”是“”的充分不必要條件,求的取值范圍.19.(附加題,本小題滿分10分,該題計入總分)已知函數(shù),若在區(qū)間內(nèi)有且僅有一個,使得成立,則稱函數(shù)具有性質(zhì)(1)若,判斷是否具有性質(zhì),說明理由;(2)若函數(shù)具有性質(zhì),試求實數(shù)的取值范圍20.經(jīng)市場調(diào)查,某超市的一種小商品在過去的近20天內(nèi)的銷售量(件)與價格(元)均為時間t(天)的函數(shù),且銷售量近似滿足g(t)=80-2t,價格近似滿足f(t)=20-|t-10|.(1)試寫出該種商品的日銷售額y與時間t(0≤t≤20)的函數(shù)表達式;(2)求該種商品的日銷售額y的最大值與最小值.21.2021年新冠肺炎疫情仍在世界好多國家肆虐,并且出現(xiàn)了傳染性更強的“德爾塔”、“拉姆達”、“奧密克戎”變異毒株,盡管我國抗疫取得了很大的成績,疫情也得到了很好的遏制,但由于整個國際環(huán)境的影響,時而也會出現(xiàn)一些散發(fā)病例,故而抗疫形勢依然艱巨,日常防護依然不能有絲毫放松.某科研機構(gòu)對某變異毒株在一特定環(huán)境下進行觀測,每隔單位時間進行一次記錄,用表示經(jīng)過單位時間的個數(shù),用表示此變異毒株的數(shù)量,單位為萬個,得到如下觀測數(shù)據(jù):123456(萬個)1050250若該變異毒株的數(shù)量(單位:萬個)與經(jīng)過個單位時間的關(guān)系有兩個函數(shù)模型與可供選擇.(1)判斷哪個函數(shù)模型更合適,并求出該模型的解析式;(2)求至少經(jīng)過多少個單位時間該病毒的數(shù)量不少于1億個.(參考數(shù)據(jù):)

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】先計算,,根據(jù)函數(shù)的零點存在性定理可得函數(shù)的零點所在的區(qū)間【詳解】函數(shù),時函數(shù)是連續(xù)函數(shù),,,故有,根據(jù)函數(shù)零點存在性定理可得,函數(shù)的零點所在的區(qū)間為,故選:【點睛】本題主要考查函數(shù)的零點存在性定理的應(yīng)用,不等式的性質(zhì),屬于基礎(chǔ)題2、B【解析】首先判斷函數(shù)在上單調(diào)遞增;然后根據(jù),同時結(jié)合函數(shù)的單調(diào)性及放縮法即可證明選項B;通過舉例說明可判斷選項A,C,D.【詳解】因為,所以函數(shù)在上單調(diào)遞增;因為,,,均為正數(shù),所以,又,所以,所以,所以,又因為,所以,選項B正確;當(dāng)時,滿足,但不滿足,故選項A錯誤;當(dāng)時,滿足,但此時,不滿足,故選項C錯誤;當(dāng)時,滿足,但此時,不滿足,故選項D錯誤.故選:B.3、A【解析】根據(jù)圖象可得:,,,.,則.令,,求函數(shù)的值域,即可得出結(jié)果.【詳解】畫出函數(shù)的大致圖象如下:根據(jù)圖象可得:若方程有四個不同的解,,,,且,則,,,.,,,則.令,,而函數(shù)在單調(diào)遞增,所以,則.故選:A.【點睛】本題考查函數(shù)的圖象與性質(zhì),考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想、數(shù)形結(jié)合思想,考查運算求解能力,求解時注意借助圖象分析問題,屬于中檔題.4、A【解析】利用半徑之和與圓心距的關(guān)系可得正確的選項.【詳解】圓,即,圓心為(0,3),半徑為1,圓,即,圓心為(4,0),半徑為3..所以兩圓相離,故選:A.5、C【解析】根據(jù)兩平行直線的系數(shù)之間的關(guān)系求出,把兩直線的方程中的系數(shù)化為相同的,然后利用兩平行直線間的距離公式,求得結(jié)果.【詳解】直線l1與l2平行,所以,解得,所以直線l2的方程為:,直線:即,與直線:的距離為:.故選:C【點睛】本題考查直線平行的充要條件,兩平行直線間的距離公式,注意系數(shù)必須統(tǒng)一,屬于基礎(chǔ)題.6、B【解析】利用條件f(1)<0,得到0<a<1.f(x)在R上單調(diào)遞減,從而將f(x2+tx)<f(x﹣4)轉(zhuǎn)化為x2+tx>x﹣4,研究二次函數(shù)得解.【詳解】∵f(﹣x)=a﹣x﹣ax=﹣f(x),∴f(x)是定義域為R的奇函數(shù),∵f(x)=ax﹣a﹣x(a>0且a≠1),且f(1)<0,∴,又∵a>0,且a≠1,∴0<a<1∵ax單調(diào)遞減,a﹣x單調(diào)遞增,∴f(x)在R上單調(diào)遞減不等式f(x2+tx)+f(4﹣x)<0化為:f(x2+tx)<f(x﹣4),∴x2+tx>x﹣4,即x2+(t﹣1)x+4>0恒成立,∴△=(t﹣1)2﹣16<0,解得:﹣3<t<5故答案為B【點睛】本題主要考查函數(shù)的奇偶性和單調(diào)性,考查不等式的恒成立問題,意在考查學(xué)生對這些知識的掌握水平和分析推理能力.7、C【解析】令,則,所以,,對以上三式兩邊同時乘方,則,,,顯然最小,故選C.8、D【解析】利用向量的坐標(biāo)運算得到|2用θ的三角函數(shù)表示化簡求最值【詳解】解:向量,向量,則2(2cosθ,2sinθ+1),所以|22=(2cosθ)2+(2sinθ+1)2=8﹣4cosθ+4sinθ=8﹣8sin(),所以|22的最大值,最小值分別是:16,0;所以|2的最大值,最小值分別是4,0;故選:D【點睛】本題考查了向量的坐標(biāo)運算以及三角函數(shù)解析式的化簡;利用了兩角差的正弦公式以及正弦函數(shù)的有界性9、B【解析】構(gòu)造函數(shù),則函數(shù)的零點所在的區(qū)間即所在的區(qū)間,由于連續(xù),且:,,由函數(shù)零點存在定理可得:所在的區(qū)間是.本題選擇B選項.10、A【解析】集合A三個實數(shù)0,1,2,而集合B表示的是大于等于1小于2的所有實數(shù),所以兩個集合的交集{1},故選A.考點:集合的運算.二、填空題:本大題共6小題,每小題5分,共30分。11、6【解析】先求圓心到直線的距離,再根據(jù)弦心距、半徑、弦長的幾何關(guān)系求|AB|.【詳解】因為圓心C(3,1)到直線的距離,所以故答案為:612、32【解析】由n個元素組成的集合,集合的子集個數(shù)為個.【詳解】解:由題意得,則A的子集個數(shù)為故答案為:32.13、8【解析】根據(jù)“斜二測畫法”原理還原出△ABC,利用邊長對應(yīng)關(guān)系計算原△ABC的面積即可詳解】根據(jù)“斜二測畫法”原理,還原出△ABC,如圖所示;由B′O′=C′O′=2,∠B'A'C'=90°,∴O′A′B′C′=2,∴原△ABC的面積為SBC×OA4×4=8故答案為8【點睛】本題考查了斜二測畫法中原圖和直觀圖面積的計算問題,是基礎(chǔ)題14、【解析】根據(jù)給定條件利用奇函數(shù)的定義計算作答.【詳解】因函數(shù)是奇函數(shù),其定義域為R,則對,,即,整理得:,而不恒為0,于得,所以實數(shù).故答案為:15、或【解析】先求兩直線和的交點,再分類討論,先分析所求直線斜率不存在時是否符合題意,再分析直線斜率存在時,設(shè)斜率為,再由原點到該直線的距離為,求出,得到答案.【詳解】由和,得,即交點坐標(biāo)為,(1)當(dāng)所求直線斜率不存在時,直線方程為,此時原點到直線的距離為,符合題意;(2)當(dāng)所求直線斜率存在時,設(shè)過該點的直線方程為,化為一般式得,由原點到直線的距離為,則,解得,得所求直線的方程為.綜上可得,所求直線的方程為或故答案為:或【點睛】本題考查了求兩直線的交點坐標(biāo),由點到直線的距離求參,還考查了對直線的斜率是否存在分類討論的思想,屬于中檔題.三、16、【解析】根據(jù)并集的定義可得答案.【詳解】,,.故答案為:.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)【解析】(1)將函數(shù)化簡為,令,則,求出對稱軸,對區(qū)間與對稱軸的位置關(guān)系進行分類討論求出最小值;(2)要滿足方程在上有四個不相等的實根,需滿足在上有兩個不等實根,列出相應(yīng)的不等式組,求解即可.【詳解】(1),令,則,對稱軸為:當(dāng)即時,,當(dāng)即時,,當(dāng)時,,所以求函數(shù)在上的最小值;(2)要滿足方程在上有四個不相等的實根,需滿足在上有兩個不等零點,,解得.【點睛】本題考查動軸定區(qū)間分類討論二次函數(shù)最小值,正弦函數(shù)的單調(diào)性,二次函數(shù)的幾何性質(zhì),屬于中檔題.18、(1),(2)【解析】(1)先解出集合B,再根據(jù)集合的運算求得答案;(2)根據(jù)題意可知A.B,由此列出相應(yīng)的不等式組,解得答案.【小問1詳解】,,故,;【小問2詳解】由題意A是非空集合,“”是“”的充分不必要條件,故得A.B,得,或或,解得,故的取值范圍為.19、(Ⅰ)具有性質(zhì);(Ⅱ)或或【解析】(Ⅰ)具有性質(zhì).若存在,使得,解方程求出方程的根,即可證得;(Ⅱ)依題意,若函數(shù)具有性質(zhì),即方程在上有且只有一個實根.設(shè),即在上有且只有一個零點.討論的取值范圍,結(jié)合零點存在定理,即可得到的范圍試題解析:(Ⅰ)具有性質(zhì)依題意,若存在,使,則時有,即,,.由于,所以.又因為區(qū)間內(nèi)有且僅有一個,使成立,所以具有性質(zhì)5分(Ⅱ)依題意,若函數(shù)具有性質(zhì),即方程在上有且只有一個實根設(shè),即在上有且只有一個零點解法一:(1)當(dāng)時,即時,可得在上為增函數(shù),只需解得交集得(2)當(dāng)時,即時,若使函數(shù)在上有且只有一個零點,需考慮以下3種情況:(?。r,在上有且只有一個零點,符合題意(ⅱ)當(dāng)即時,需解得交集得(ⅲ)當(dāng)時,即時,需解得交集得(3)當(dāng)時,即時,可得在上為減函數(shù)只需解得交集得綜上所述,若函數(shù)具有性質(zhì),實數(shù)的取值范圍是或或14分解法二:依題意,(1)由得,,解得或同時需要考慮以下三種情況:(2)由解得(3)由解得不等式組無解(4)由解得解得綜上所述,若函數(shù)具有性質(zhì),實數(shù)的取值范圍是或或14分考點:1.零點存在定理;2.分類討論的思想20、解:(1)y(2)ymax=1225,ymin=600【解析】解:(Ⅰ)=(Ⅱ)當(dāng)0≤t<10時,y的取值范圍是[1200,1225],在t=5時,y取得最大值為1225;當(dāng)10≤t≤20時,y的取值范圍是[600,1200],在t=20時,y取得最小值為600(答)總

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論