版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
山西省朔州市懷仁八中2025屆數(shù)學高一上期末經(jīng)典模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.函數(shù)為定義在R上的單調(diào)函數(shù),則實數(shù)m的取值范圍是()A. B.C. D.2.已知函數(shù)是定義在R上的周期為2的偶函數(shù),當時,,則A. B.C. D.3.函數(shù)的部分圖象如圖所示,將的圖象向右平移個單位長度后得到的函數(shù)圖象關于軸對稱,則的最小值為()A. B.C. D.4.如下圖是一個正方體的平面展開圖,在這個正方體中①②與成角③與為異面直線④以上四個命題中,正確的序號是A.①②③ B.②④C.③④ D.②③④5.下列函數(shù)在其定義域內(nèi)既是奇函數(shù),又是增函數(shù)的是A. B.C. D.6.如圖,在矩形中,是兩條對角線的交點,則A. B.C. D.7.已知函數(shù)在區(qū)間上是單調(diào)增函數(shù),則實數(shù)的取值范圍為()A. B.C. D.8.函數(shù)的圖象如圖所示,為了得到函數(shù)的圖象,可以把函數(shù)的圖象A.每個點的橫坐標縮短到原來的(縱坐標不變),再向左平移個單位B.每個點橫坐標伸長到原來的倍(縱坐標不變),再向左平移個單位C.先向左平移個單位,再把所得各點的橫坐標伸長到原來的倍(縱坐標不變)D.先向左平移個單位,再把所得各點的橫坐標縮短到原來的(縱坐標不變)9.王安石在《游褒禪山記》中寫道“世之奇?zhèn)?、瑰怪,非常之觀,常在于險遠,而人之所罕至焉,故非有志者不能至也”,請問“有志”是到達“奇?zhèn)?、瑰怪,非常之觀”的A.充要條件 B.既不充分也不必要條件C.充分不必要條件 D.必要不充分條件10.若函數(shù)的圖像關于點中心對稱,則的最小值為()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.《九章算術》是中國古代的數(shù)學名著,其中《方田》一章涉及到了弧田面積的計算問題,如圖所示,弧田是由弧AB和弦AB所圍成的圖中陰影部分若弧田所在圓的半徑為1,圓心角為,則此弧田的面積為____________.12.若,且,則上的最小值是_________.13.函數(shù)y=1-sin2x-2sinx的值域是______14.函數(shù)的零點個數(shù)為_________.15.已知,,則________.(用m,n表示)16.已知,則___________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知A,B,C為的內(nèi)角.(1)若,求的取值范圍;(2)求證:;(3)設,且,,,求證:18.定義在上奇函數(shù),已知當時,求實數(shù)a的值;求在上的解析式;若存在時,使不等式成立,求實數(shù)m的取值范圍19.在三棱錐中,和是邊長為的等邊三角形,,分別是的中點.(1)求證:平面;(2)求證:平面;(3)求三棱錐的體積.20.某生物研究者于元旦在湖中放入一些鳳眼蓮,這些鳳眼蓮在湖中的蔓延速度越來越快,二月底測得鳳眼蓮覆蓋面積為24m2,三月底測得覆蓋面積為36m2,鳳眼蓮覆蓋面積y(單位:m2)與月份x(單位:月)的關系有兩個函數(shù)模型與可供選擇(1)試判斷哪個函數(shù)模型更合適,并求出該模型的解析式;(2)求鳳眼蓮覆蓋面積是元旦放入面積10倍以上的最小月份(參考數(shù)據(jù):lg2≈03010,lg3≈0.4771)21.已知平面向量滿足:,|.(1)若,求的值;(2)設向量的夾角為,若存在,使得,求的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】由在單調(diào)遞增可得函數(shù)為增函數(shù),保證兩個函數(shù)分別單調(diào)遞增,且連接點處左端小于等于右端的函數(shù)值即可【詳解】由題意,函數(shù)為定義在R上的單調(diào)函數(shù)且在單調(diào)遞增故在單調(diào)遞增,即且在處,綜上:解得故選:B2、A【解析】依題意有.3、C【解析】觀察圖象可得函數(shù)的最大值,最小值,周期,由此可求函數(shù)的解析式,根據(jù)三角函數(shù)變換結(jié)論,求出平移后的函數(shù)解析式,根據(jù)平移后函數(shù)圖象關于軸對稱,列方程求的值,由此確定其最小值.【詳解】根據(jù)函數(shù)的部分圖象,可得,,∴因,可得,又,求得,故將的圖象向右平移個單位長度后得到的函數(shù)的圖象,因為的圖象關于直線軸對稱,故,即,故的最小值為,故選:C4、D【解析】由已知中正方體的平面展開圖,得到正方體的直觀圖如上圖所示:由正方體的幾何特征可得:①不平行,不正確;
②AN∥BM,所以,CN與BM所成的角就是∠ANC=60°角,正確;③與不平行、不相交,故異面直線與為異面直線,正確;④易證,故,正確;故選D5、D【解析】分析:利用基本初等函數(shù)的單調(diào)性和奇偶性的定義,判定各選項中的函數(shù)是否滿足條件即可.詳解:對于A中,函數(shù)是定義域內(nèi)的非奇非偶函數(shù),所以不滿足題意;對于B中,函數(shù)是定義域內(nèi)的非奇非偶函數(shù),所以不滿足題意;對于C中,函數(shù)是定義域內(nèi)的偶函數(shù),所以不滿足題意;對于D中,函數(shù)是定義域內(nèi)的奇函數(shù),也是增函數(shù),所以滿足題意,故選D.點睛:本題主要考查了基本初等函數(shù)的單調(diào)性與奇偶性的判定問題,其中熟記基本初等函數(shù)的單調(diào)性和奇偶性的判定方法是解答的關鍵,著重考查了推理與論證能力.6、B【解析】利用向量加減法的三角形法則即可求解.【詳解】原式=,答案為B.【點睛】主要考查向量的加減法運算,屬于基礎題.7、B【解析】根據(jù)二次函數(shù)的圖象與性質(zhì),可知區(qū)間在對稱軸的右面,即,即可求得答案.【詳解】函數(shù)為對稱軸開口向上的二次函數(shù),在區(qū)間上是單調(diào)增函數(shù),區(qū)間在對稱軸的右面,即,實數(shù)的取值范圍為.故選B.【點睛】本題考查二次函數(shù)的圖象與性質(zhì),明確二次函數(shù)的對稱軸、開口方向與函數(shù)的單調(diào)性的關系是解題關鍵.8、C【解析】根據(jù)函數(shù)的圖象,設可得再根據(jù)五點法作圖可得故可以把函數(shù)的圖象先向左平移個單位,得到的圖象,再把所得各點的橫坐標伸長到原來的2倍(縱坐標不變),即可得到函數(shù)的圖象,故選C9、D【解析】根據(jù)題意“非有志者不能至也”可知到達“奇?zhèn)?、瑰怪,非常之觀”必是有志之士,故“有志”是到達“奇?zhèn)ァ⒐骞?,非常之觀”的必要條件,故選D.10、C【解析】根據(jù)函數(shù)的圖像關于點中心對稱,由求出的表達式即可.【詳解】因為函數(shù)的圖像關于點中心對稱,所以,所以,解得,所以故選:C【點睛】本題主要考查余弦函數(shù)的對稱性,還考查了運算求解的能力,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】根據(jù)題意所求面積,再根據(jù)扇形和三角形面積公式,進行求解即可.【詳解】易知為等腰三角形,腰長為,底角為,,所以,弧田的面積即圖中陰影部分面積,根據(jù)扇形面積及三角形面積可得:所以.故答案為:.12、【解析】將的最小值轉(zhuǎn)化為求的最小值,然后展開后利用基本不等式求得其最小值【詳解】解:因為,且,,當且僅當時,即,時等號成立;故答案為:13、[-2,2]【解析】利用正弦函數(shù)的值域,二次函數(shù)的性質(zhì),求得函數(shù)f(x)的值域,屬于基礎題【詳解】∵sinx∈[-1,1],∴函數(shù)y=1-sin2x-2sinx=-(sinx+1)2+2,故當sinx=1時,函數(shù)f(x)取得最小值為-4+2=-2,當sinx=-1時,函數(shù)f(x)取得最大值為2,故函數(shù)的值域為[-2,2],故答案為[-2,2]【點睛】本題主要考查正弦函數(shù)的值域,二次函數(shù)的性質(zhì),屬于基礎題14、3【解析】作出函數(shù)圖象,根據(jù)函數(shù)零點與函數(shù)圖象的關系,直接判斷零點個數(shù).【詳解】作出函數(shù)圖象,如下,由圖象可知,函數(shù)有3個零點(3個零點分別為,0,2).故答案為:315、【解析】根據(jù)指數(shù)式與對數(shù)式的互化,以及對數(shù)的運算性質(zhì),準確運算,即可求解.【詳解】因為,,所以,,所以,可得.故答案為:16、##-0.75【解析】將代入函數(shù)解析式計算即可.【詳解】令,則,所以.故答案為:三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)證明見解析(3)證明見解析【解析】(1)根據(jù)兩角和的正切公式及均值不等式求解;(2)先證明,再由不等式證明即可;(3)找出不等式的等價條件,換元后再根據(jù)函數(shù)的單調(diào)性構造不等式,利用不等式性質(zhì)即可得證.【小問1詳解】,為銳角,,,解得,當且僅當時,等號成立,即.【小問2詳解】在中,,,,.【小問3詳解】由(2)知,令,原不等式等價為,在上為增函數(shù),,,同理可得,,,,故不等式成立,問題得證.【點睛】本題第3問的證明需要用到,換元后轉(zhuǎn)換為,再構造不等式是證明的關鍵,本題的難點就在利用函數(shù)單調(diào)性構造出不等式.18、(1);(2);(3).【解析】根據(jù)題意,由函數(shù)奇偶性的性質(zhì)可得,解可得的值,驗證即可得答案;當時,,求出的解析式,結(jié)合函數(shù)的奇偶性分析可得答案;根據(jù)題意,若存在,使得成立,即在有解,變形可得在有解設,分析的單調(diào)性可得的最大值,從而可得結(jié)果【詳解】根據(jù)題意,是定義在上的奇函數(shù),則,得經(jīng)檢驗滿足題意;故;根據(jù)題意,當時,,當時,,又是奇函數(shù),則綜上,當時,;根據(jù)題意,若存在,使得成立,即在有解,即在有解又由,則在有解設,分析可得上單調(diào)遞減,又由時,,故即實數(shù)m的取值范圍是【點睛】本題考查函數(shù)的奇偶性的應用,以及指數(shù)函數(shù)單調(diào)性的應用,屬于綜合題19、(1)證明見解析;(2)證明見解析;(3).【解析】(1)欲證線面平行,則需證直線與平面內(nèi)的一條直線平行.由題可證,則證得平面;(2)欲證線面垂直,則需證直線垂直于平面內(nèi)的兩條相交直線.連接,可證得,從而可證得平面;(3)由(2)可知,為三棱錐的高,平面為三棱錐的底面,應用椎體體積公式即可求解.【詳解】(1)證明:分別是的中點,又平面,平面平面(2)如圖,連接,,是的中點,同理又,又平面(3)由(2)可知,為三棱錐的高,且,.【點睛】本題考查線面平行,線面垂直的判定定理以及椎體體積公式的應用,考查空間想象能力與思維能力,屬中檔題.20、(1)選擇較為合適;(2)6月【解析】(1)根據(jù)指數(shù)函數(shù)和冪函數(shù)的性質(zhì)可得合適的函數(shù)的模型.(2)根據(jù)選擇的函數(shù)模型可求最小月份.小問1詳解】指數(shù)函數(shù)隨著自變量的增大其函數(shù)的增長速度越大,冪函數(shù)隨著自變量的增大其函數(shù)的增長速度越小,因為鳳眼蓮在湖中的蔓
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度場監(jiān)管應急預案合作協(xié)議4篇
- 二零二五年防盜門新材料研發(fā)與應用合同2篇
- 二零二四年農(nóng)產(chǎn)品區(qū)域代理銷售及品牌推廣合同3篇
- 2025年水庫合作承包協(xié)議-水庫水環(huán)境監(jiān)測與治理3篇
- 二零二五版新型落水管材料研發(fā)與應用合作協(xié)議4篇
- 二零二五版電子商務公司與快遞物流企業(yè)全面合作合同3篇
- 2025年高科技廠房租賃及研發(fā)支持服務協(xié)議4篇
- 二零二四年工廠設備購買與安裝合同
- 《認識更大的數(shù)-數(shù)一數(shù)》說課稿-2024-2025學年北師大版數(shù)學四年級上冊
- 二零二五年度建筑材料采購及售后服務合同范本3篇
- 《流感科普宣教》課件
- 離職分析報告
- 春節(jié)家庭用電安全提示
- 醫(yī)療糾紛預防和處理條例通用課件
- 廚邦醬油推廣方案
- 乳腺癌診療指南(2024年版)
- 高三數(shù)學寒假作業(yè)1
- 保險產(chǎn)品創(chuàng)新與市場定位培訓課件
- (完整文本版)體檢報告單模版
- 1例左舌鱗癌手術患者的圍手術期護理體會
- 鋼結(jié)構牛腿計算
評論
0/150
提交評論