版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆福建省部分重點高中高二數(shù)學(xué)第一學(xué)期期末經(jīng)典試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知是定義在上的奇函數(shù),對任意兩個不相等的正數(shù)、都有,記,,,則()A. B.C. D.2.設(shè)為坐標原點,直線與雙曲線的兩條漸近線分別交于兩點,若的面積為8,則的焦距的最小值為()A.4 B.8C.16 D.323.已知雙曲線上點到點的距離為15,則點到點的距離為()A.9 B.6C.6或36 D.9或214.已知直線,若異面,,則的位置關(guān)系是()A.異面 B.相交C.平行或異面 D.相交或異面5.已知點、為橢圓的左、右焦點,若點為橢圓上一動點,則使得的點的個數(shù)為()A. B.C. D.不能確定6.下列事件:①連續(xù)兩次拋擲同一個骰子,兩次都出現(xiàn)2點;②某人買彩票中獎;③從集合中任取兩個不同元素,它們的和大于2;④在標準大氣壓下,水加熱到90℃時會沸騰.其中是隨機事件的個數(shù)是()A.1 B.2C.3 D.47.某研究所為了研究近幾年中國留學(xué)生回國人數(shù)的情況,對2014至2018年留學(xué)生回國人數(shù)進行了統(tǒng)計,數(shù)據(jù)如下表:年份20142015201620172018年份代碼12345留學(xué)生回國人數(shù)/萬36.540.943.348.151.9根據(jù)上述統(tǒng)計數(shù)據(jù)求得留學(xué)生回國人數(shù)(單位:萬)與年份代碼滿足的線性回歸方程為,利用回歸方程預(yù)測年留學(xué)生回國人數(shù)為()A.63.14萬 B.64.72萬C.66.81萬 D.66.94萬8.如圖,在四面體中,,,,分別為,,,的中點,則化簡的結(jié)果為()A. B.C. D.9.如圖,把橢圓的長軸分成6等份,過每個分點作x軸的垂線交橢圓的上半部分于點,F(xiàn)是橢圓C的右焦點,則()A.20 B.C.36 D.3010.在中,角,,所對的邊分別為,,,若,,,則A. B.2C.3 D.11.下列四個命題中,為真命題的是()A.若a>b,則ac2>bc2B.若a>b,c>d,則a﹣c>b﹣dC.若a>|b|,則a2>b2D.若a>b,則12.已知雙曲線的一條漸近線方程為,它的焦距為2,則雙曲線的方程為()A B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某高中高二年級學(xué)生在學(xué)習(xí)完成數(shù)學(xué)選擇性必修一后進行了一次測試,總分為100分.現(xiàn)用分層隨機抽樣方法從學(xué)生的數(shù)學(xué)成績中抽取一個樣本量為40的樣本,再將40個成績樣本數(shù)據(jù)分為6組:40,50),50,60),60,70),70,80),80,90),90,100,繪制得到如圖所示的頻率分布直方圖.(1)從所給的頻率分布直方圖中估計成績樣本數(shù)據(jù)眾數(shù),平均數(shù),中位數(shù);(2)在區(qū)間40,50)和90,100內(nèi)的兩組學(xué)生成績樣本數(shù)據(jù)中,隨機抽取兩個進調(diào)查,求調(diào)查對象來自不同分組的概率.14.直線與兩坐標軸相交于,兩點,則線段的垂直平分線的方程為___________.15.如圖所示,奧林匹克標志由五個互扣的環(huán)圈組成,五環(huán)象征五大洲的團結(jié).若從該奧林匹克標志的五個環(huán)圈中任取2個,則這2個環(huán)圈恰好相交的概率為___________.16.如圖,在四棱錐中,平面,底面為矩形,分別為的中點,連接,則點到平面的距離為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)O為坐標原點,動點P在圓上,過點P作軸的垂線,垂足為Q且.(1)求動點D的軌跡E的方程;(2)直線與圓相切,且直線與曲線E相交于兩不同的點A、B,T為線段AB的中點.線段OA、OB分別與圓O交于M、N兩點,記的面積分別為,求的取值范圍.18.(12分)已知函數(shù),記f(x)的導(dǎo)數(shù)為f′(x).若曲線f(x)在點(1,f(1))處的切線斜率為﹣3,且x=2時y=f(x)有極值,(Ⅰ)求函數(shù)f(x)的解析式;(Ⅱ)求函數(shù)f(x)在[﹣1,1]上的最大值和最小值19.(12分)在柯橋古鎮(zhèn)的開發(fā)中,為保護古橋OA,規(guī)劃在O的正東方向100m的C處向?qū)Π禔B建一座新橋,使新橋BC與河岸AB垂直,并設(shè)立一個以線段OA上一點M為圓心,與直線BC相切的圓形保護區(qū)(如圖所示),且古橋兩端O和A與圓上任意一點的距離都不小于50m,經(jīng)測量,點A位于點O正南方向25m,,建立如圖所示直角坐標系(1)求新橋BC的長度;(2)當(dāng)OM多長時,圓形保護區(qū)的面積最?。?0.(12分)年月日,中國選手楊倩在東京奧運會女子米氣步槍決賽由本得冠軍,為中國代表團攬入本屆奧運會第一枚金牌.受奧運精神的鼓舞,某射擊俱樂部組織名射擊愛好者進行一系列的測試,并記錄他們的射擊得分(單位:分),將所得數(shù)據(jù)整理得到如圖所示的頻率分布直方圖.(1)求頻率分布直方圖中的值,并估計該名射擊愛好者的射擊平均得分(求平均值時同一組數(shù)據(jù)用該組區(qū)間的中點值作代表);(2)若采用分層抽樣的方法,從得分高于分的射擊愛好者中隨機抽取人調(diào)查射擊技能情況,再從這人中隨機選取人進行射擊訓(xùn)練,求這人中至少有人的分數(shù)高于分的概率.21.(12分)如圖,在正方體中,,分別為棱,的中點(1)求證:直線平面;(2)求異面直線與所成角的余弦值22.(10分)設(shè)命題p:,命題q:關(guān)于x的方程無實根.(1)若p為真命題,求實數(shù)m的取值范圍;(2)若為假命題,為真命題,求實數(shù)m的取值范圍
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】由題,可得是定義在上的偶函數(shù),且在上單調(diào)遞減,在上單調(diào)遞增,根據(jù)函數(shù)的單調(diào)性,即可判斷出的大小關(guān)系.【詳解】設(shè),由題,得,即,所以函數(shù)在上單調(diào)遞減,因為是定義在R上的奇函數(shù),所以是定義在上的偶函數(shù),因此,,,即.故選:A【點睛】本題主要考查利用函數(shù)的單調(diào)性判斷大小的問題,其中涉及到構(gòu)造函數(shù)的運用.2、B【解析】因為,可得雙曲線的漸近線方程是,與直線聯(lián)立方程求得,兩點坐標,即可求得,根據(jù)的面積為,可得值,根據(jù),結(jié)合均值不等式,即可求得答案.【詳解】雙曲線的漸近線方程是直線與雙曲線的兩條漸近線分別交于,兩點不妨設(shè)為在第一象限,在第四象限聯(lián)立,解得故聯(lián)立,解得故面積為:雙曲線其焦距為當(dāng)且僅當(dāng)取等號的焦距的最小值:故選:B.【點睛】本題主要考查了求雙曲線焦距的最值問題,解題關(guān)鍵是掌握雙曲線漸近線的定義和均值不等式求最值方法,在使用均值不等式求最值時,要檢驗等號是否成立,考查了分析能力和計算能力,屬于中檔題.3、D【解析】利用雙曲線的定義可得答案.【詳解】設(shè),,,為雙曲線的焦點,則由雙曲線定義,知,而所以或21故選:D.4、D【解析】以正方體為載體說明即可.【詳解】如下圖所示的正方體:和是異面直線,,;和是異面直線,,與是異面直線.所以兩直線與是異面直線,,則的位置關(guān)系是相交或異面.故選:D5、B【解析】利用余弦定理結(jié)合橢圓的定義可求得、,即可得出結(jié)論.【詳解】在橢圓中,,,,則,,可得,所以,,解得,此時點位于橢圓短軸的頂點.因此,滿足條件的點的個數(shù)為.故選:B.6、B【解析】因為隨機事件指的是在一定條件下,可能發(fā)生,也可能不發(fā)生的事件,只需逐一判斷4個事件哪一個符合這種情況即可【詳解】解:連續(xù)兩次拋擲同一個骰子,兩次都出現(xiàn)2點這一事件可能發(fā)生也可能不發(fā)生,①是隨機事件某人買彩票中獎這一事件可能發(fā)生也可能不發(fā)生,②是隨機事件從集合,2,中任取兩個元素,它們的和必大于2,③是必然事件在標準大氣壓下,水加熱到時才會沸騰,④是不可能事件故隨機事件有2個,故選:B7、D【解析】先求出樣本點的中心,代入線性回歸方程即可求出,再將代入線性回歸方程即可得到結(jié)果【詳解】由題意知:,,所以樣本點的中心為,所以,解得:,可得線性回歸方程為,年對應(yīng)的年份代碼為,令,則,所以預(yù)測2022年留學(xué)生回國人數(shù)為66.94萬,故選:D.8、C【解析】根據(jù)向量的加法和數(shù)乘的幾何意義,即可得到答案;【詳解】故選:C9、D【解析】由橢圓的對稱性可知,,代入計算可得答案.【詳解】設(shè)橢圓左焦點為,連接由橢圓的對稱性可知,,所以.故選:D.10、A【解析】利用正弦定理,可直接求出的值.【詳解】在中,由正弦定理得,所以,故選A.【點睛】本題考查利用正弦定理求邊,要記得正弦定理所適用的基本類型,考查計算能力,屬于基礎(chǔ)題11、C【解析】利用不等式的性質(zhì)結(jié)合特殊值法依次判斷即可【詳解】當(dāng)c=0時,A不成立;2>1,3>-1,而2-3<1-(-1),故B不成立;a=2,b=1時,,D不成立;由a>|b|知a>0,所以a2>b2,C正確故選:C12、B【解析】根據(jù)雙曲線的一條漸近線方程為,可得,再結(jié)合焦距為2和,求得,即可得解.【詳解】解:因為雙曲線的一條漸近線方程為,所以,即,又因焦距為2,即,即,因為,所以,所以,所以雙曲線的方程為.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、(1)眾數(shù);平均數(shù),中位數(shù).(2).【解析】(1)按“眾數(shù),平均數(shù),中位數(shù)”的公式求解.(2)由頻率分布直方圖得到各區(qū)間的頻率,再用古典概型求解.【小問1詳解】眾數(shù)取頻率分布直方圖中最高矩形對應(yīng)區(qū)間的中點75;平均數(shù);因為,所以中位數(shù)在區(qū)間上,且中位數(shù)【小問2詳解】由頻率分布直方圖得出在區(qū)間40,50)和90,100內(nèi)的成績樣本數(shù)據(jù)分別有4個和2個,從6個樣本選2個共有個結(jié)果,記事件A=“調(diào)查對象來自不同分組”,結(jié)果有所以.14、【解析】由直線的方程求出直線的斜率以及,兩點坐標,進而可得線段的垂直平分線的斜率以及線段的中點坐標,利用點斜式即可求解.【詳解】由直線可得,所以直線的斜率為,所以線段的垂直平分線的斜率為,令可得;令可得;即,,所以線段的中點坐標為,所以線段的垂直平分線的方程為,整理得.故答案為:.15、【解析】利用古典概型求概率.【詳解】從該奧林匹克標志的五個環(huán)圈中任取2個,共有10種情況,其中這2個環(huán)圈恰好相交的情況有4種,則所求的概率.故答案為:.16、【解析】利用轉(zhuǎn)化法,根據(jù)線面平行的性質(zhì),結(jié)合三棱錐的體積等積性進行求解即可.【詳解】設(shè)是的中點,連接,因為是的中點,所以,因為平面,平面,所以平面,因此點到平面的距離等于點到平面的距離,設(shè)為,因為平面,所以,,于是有,底面為矩形,所以有,,因為平面,所以,于是有:,由余弦定理可知:cos∠PEC=所以,因此,,因為,所以,故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)設(shè)出點D的坐標,借助向量運算表示出點P的坐標代入圓O的方程計算作答.(2)在直線的斜率存在時設(shè)出其方程,與軌跡E的方程聯(lián)立,借助韋達定理表示出,再利用二次函數(shù)性質(zhì)計算得解,然后計算直線的斜率不存在的值作答.【小問1詳解】設(shè)點,則,因,則有,又點P在圓上,即,所以動點D的軌跡E的方程是.【小問2詳解】當(dāng)直線的斜率存在時,設(shè)其方程為:,因直線與圓相切,則,即,而時,直線與橢圓E相切,不符合題意,因此,由消去x并整理得:,設(shè),則,而點T是線段AB中點,則有:,令,則,而,當(dāng),即時,,當(dāng),即時,,而,于是得,當(dāng)直線的斜率不存在時,直線,,此時,所以的取值范圍是.【點睛】思路點睛:圓錐曲線中的最值問題,往往需要利用韋達定理構(gòu)建目標的函數(shù)關(guān)系式,自變量可以斜率或點的橫、縱坐標等.而目標函數(shù)的最值可以通過二次函數(shù)或基本不等式或?qū)?shù)等求得.18、(Ⅰ)f(x)=x3﹣3x2+1;(Ⅱ)最大值為1,最小值為﹣3【解析】(Ⅰ)求導(dǎo)可得f′(x)的解析式,根據(jù)導(dǎo)數(shù)的幾何意義,可得k=f′(1)=-3,又在x=2處有極值,所以f′(2)=0,即可求得a,b的值,即可得答案;(Ⅱ)由(Ⅰ)可得f′(x)的解析式,令f′(x)=0,解得x=0或x=2,討論f(x)在﹣1<x<0,0<x<1上的單調(diào)性,即可求得f(x)的極值,檢驗邊界值,即可得答案.【詳解】(Ⅰ)由題意得:f′(x)=3x2+2ax+b,所以k=f′(1)=3+2a+b=﹣3,f′(2)=12+4a+b=0,解得a=﹣3,b=0,所以f(x)=x3﹣3x2+1;(Ⅱ)由(Ⅰ)知,令f′(x)=3x2﹣6x=0,解得x=0或x=2,當(dāng)﹣1<x<0時,f′(x)>0,f(x)在(﹣1,0)是增函數(shù),當(dāng)0<x<1時,f′(x)<0,f(x)在(0,1)是減函數(shù),所以f(x)的極大值為f(0)=1,又f(1)=﹣1,f(﹣1)=﹣3,所以f(x)在[﹣1,1]上的最大值為1,最小值為﹣319、(1)80m;(2).【解析】(1)根據(jù)斜率的公式,結(jié)合解方程組法和兩點間距離公式進行求解即可;(2)根據(jù)圓的切線性質(zhì)進行求解即可.【小問1詳解】由題意,可知,,∵∴直線BC方程:①,同理可得:直線AB方程:②由①②可知,∴,從而得故新橋BC得長度為80m【小問2詳解】設(shè),則,圓心,∵直線BC與圓M相切,∴半徑,又因為,∵∴,所以當(dāng)時,圓M的面積達到最小20、(1),平均分為;(2).【解析】(1)利用頻率直方圖中所有矩形面積之和為可求得的值,將每個矩形底邊的中點值乘以對應(yīng)矩形的面積,將所得結(jié)果全部相加可得平均成績;(2)分析可知所抽取的人中,成績在內(nèi)的有人,分別記為、、、,成績在內(nèi)的有人,分別記為、,列舉出所有的基本事件,并確定所求事件所包含的基本事件,利用古典概型的概率公式可求得所求事件
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年適用企業(yè)分期貸款協(xié)議樣式版B版
- 6-3《文氏外孫入村收麥》說課稿及反思 2023-2024學(xué)年統(tǒng)編版高中語文必修上冊
- 2024年跨區(qū)域企業(yè)展期還款協(xié)議書及稅務(wù)影響分析3篇
- 2024年貨物運輸合同詳細條款與標的說明
- 2024影視作品制作合同與分成協(xié)議
- 個人投資合伙經(jīng)營合同范本2024版版B版
- 針灸治療帶狀皰疹經(jīng)驗總結(jié)報告
- 福建省南平市太平中學(xué)2022年高一英語模擬試題含解析
- 2025殘疾人冰雪項目專項基金管理合同3篇
- 2024更新版教師事業(yè)單位聘用協(xié)議范本版B版
- DL-T1848-2018220kV和110kV變壓器中性點過電壓保護技術(shù)規(guī)范
- 實景三維地理信息元數(shù)據(jù)規(guī)范
- 意識障礙的判斷及護理
- (高清版)JTGT 3650-01-2022 公路橋梁施工監(jiān)控技術(shù)規(guī)程
- 數(shù)據(jù)資產(chǎn)入表理論與實踐
- 2023年供應(yīng)商質(zhì)量年終總結(jié)報告
- 2024家庭戶用光伏發(fā)電系統(tǒng)運行和維護規(guī)范
- 醫(yī)療機構(gòu)強制報告制度
- 江蘇省鎮(zhèn)江市2023-2024學(xué)年高一上學(xué)期期末考試化學(xué)試題(解析版)
- 國有企業(yè)內(nèi)部審計實施方案
- 現(xiàn)場材料員述職報告
評論
0/150
提交評論