版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
安徽黃山市2025屆高一數(shù)學(xué)第一學(xué)期期末考試試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.函數(shù)的最大值是()A. B.1C. D.22.已知全集U={1,2,3,4,5,6},集合A={2,3,5,6},集合B={1,3,4,6},則集合A∩(?UB)=()A.{2,5} B.{3,6}C.{2,5,6} D.{2,3,5,6}3.如圖是某班名學(xué)生身高的頻率分布直方圖,那么該班身高在區(qū)間內(nèi)的學(xué)生人數(shù)為A. B.C. D.4.已知,,,則a,b,c的大小關(guān)系為()A B.C. D.5.已知,則直線通過()象限A.第一、二、三 B.第一、二、四C.第一、三、四 D.第二、三、四6.“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件7.要證明命題“所有實數(shù)的平方都是正數(shù)”是假命題,只需()A.證明所有實數(shù)的平方都不是正數(shù)B.證明平方是正數(shù)的實數(shù)有無限多個C.至少找到一個實數(shù),其平方是正數(shù)D.至少找到一個實數(shù),其平方不是正數(shù)8.我國著名數(shù)學(xué)家華羅庚曾說過:“數(shù)缺形時少直觀,形少數(shù)時難入微;數(shù)形結(jié)合百般好,隔離分家萬事休”.在數(shù)學(xué)學(xué)習(xí)中和研究中,常用函數(shù)的圖象來研究函數(shù)的性質(zhì),也常用函數(shù)的解析式來琢磨函數(shù)圖象的特征,如函數(shù)的大致圖象是()A. B.C. D.9.已知,,則的值約為(精確到)()A. B.C. D.10.函數(shù)的零點所在的區(qū)間為A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.如圖,點為銳角的終邊與單位圓的交點,逆時針旋轉(zhuǎn)得,逆時針旋轉(zhuǎn)得逆時針旋轉(zhuǎn)得,則__________,點的橫坐標(biāo)為_________12.在平面直角坐標(biāo)系中,點在單位圓O上,設(shè),且.若,則的值為______________.13.扇形的半徑為2,弧長為2,則該扇形的面積為______14.已知定義在上的函數(shù)滿足,且當(dāng)時,.若對任意,恒成立,則實數(shù)的取值范圍是______15.冪函數(shù),當(dāng)取不同的正數(shù)時,在區(qū)間上它們的圖像是一族美麗的曲線(如圖).設(shè)點,連接,線段恰好被其中的兩個冪函數(shù)的圖像三等分,即有.那么_______16.已知直線:,直線:,若,則__________三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知是定義在上的偶函數(shù),當(dāng)時,.(1)求在時的解析式;(2)若,在上恒成立,求實數(shù)的取值范圍.18.已知有半徑為1,圓心角為a(其中a為給定的銳角)的扇形鐵皮OMN,現(xiàn)利用這塊鐵皮并根據(jù)下列方案之一,裁剪出一個矩形.方案1:如圖1,裁剪出的矩形ABCD的頂點A,B在線段ON上,點C在弧MN上,點D在線段OM上;方案2:如圖2,裁剪出的矩形PQRS的頂點P,S分別在線段OM,ON上,頂點Q,R在弧MN上,并且滿足PQ∥RS∥OE,其中點E為弧MN的中點.(1)按照方案1裁剪,設(shè)∠NOC=,用表示矩形ABCD的面積S1,并證明S1的最大值為;(2)按照方案2裁剪,求矩形PQRS的面積S2的最大值,并與(1)中的結(jié)果比較后指出按哪種方案可以裁剪出面積最大的矩形.19.函數(shù)的定義域且,對定義域D內(nèi)任意兩個實數(shù),,都有成立(1)求的值并證明為偶函數(shù);20.若向量的最大值為(1)求的值及圖像的對稱中心;(2)若不等式在上恒成立,求的取值范圍21.已知且.(1)求的解析式;(2)解關(guān)于x不等式:.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】利用正余弦的差角公式展開化簡即可求最值.【詳解】,∵,∴函數(shù)的最大值是.故選:C.2、A【解析】先求出?UB,再求A∩(?UB)即可.【詳解】解:由已知?UB={2,5},所以A∩(?UB)={2,5}.故選:A.【點睛】本題考查集合的交集和補(bǔ)集的運(yùn)算,是基礎(chǔ)題.3、C【解析】身高在區(qū)間內(nèi)的頻率為人數(shù)為,選C.點睛:頻率分布直方圖中小長方形面積等于對應(yīng)區(qū)間的概率,所有小長方形面積之和為1;頻率分布直方圖中組中值與對應(yīng)區(qū)間概率乘積的和為平均數(shù);頻率分布直方圖中小長方形面積之比等于對應(yīng)概率之比,也等于對應(yīng)頻數(shù)之比.4、A【解析】比較a,b,c的值與中間值0和1的大小即可﹒【詳解】,,所以,故選:A.5、A【解析】根據(jù)判斷、、的正負(fù)號,即可判斷直線通過的象限【詳解】因為,所以,①若則,,直線通過第一、二、三象限②若則,,直線通過第一、二、三象限【點睛】本題考查直線,作為選擇題6、B【解析】根據(jù)充分條件、必要條件的概念判斷即可.【詳解】若,則成立,即必要性成立,反之若,則不成立,所以“”是“”的必要不充分條件.故選:B.7、D【解析】全稱命題是假命題,則其否定一定是真命題,判斷選項.【詳解】命題“所有實數(shù)的平方都是正數(shù)”是全稱命題,若其為假命題,那么命題的否定是真命題,所以只需“至少找到一個實數(shù),其平方不是正數(shù).故選:D8、A【解析】先判斷函數(shù)的奇偶性,再根據(jù)特殊點的函數(shù)值選出正確答案.【詳解】對于,∵,∴為偶函數(shù),圖像關(guān)于y軸對稱,排除D;由,排除B;由,排除C.故選:A.【點睛】思路點睛:函數(shù)圖象的辨識可從以下方面入手:(1)從函數(shù)的定義域,判斷圖象的左右位置;從函數(shù)的值域,判斷圖象的上下位置(2)從函數(shù)的單調(diào)性,判斷圖象的變化趨勢;(3)從函數(shù)的奇偶性,判斷圖象的對稱性;(4)從函數(shù)的特征點,排除不合要求的圖象9、B【解析】利用對數(shù)的運(yùn)算性質(zhì)將化為和的形式,代入和的值即可得解.【詳解】.故選:B10、B【解析】函數(shù)的零點所在區(qū)間需滿足的條件是函數(shù)在區(qū)間端點的函數(shù)值符號相反,函數(shù)是連續(xù)函數(shù)【詳解】解:函數(shù)是連續(xù)增函數(shù),,,即,函數(shù)的零點所在區(qū)間是,故選:【點睛】本題考查函數(shù)的零點的判定定理,連續(xù)函數(shù)在某個區(qū)間存在零點的條件是函數(shù)在區(qū)間端點處的函數(shù)值異號,屬于基礎(chǔ)題二、填空題:本大題共6小題,每小題5分,共30分。11、①.##0.96②.【解析】由終邊上的點得,,應(yīng)用二倍角正弦公式求,根據(jù)題設(shè)描述知在的終邊上,結(jié)合差角余弦公式求其余弦值即可得橫坐標(biāo).【詳解】由題設(shè)知:,,∴,所在角為,則,∴點的橫坐標(biāo)為.故答案為:,.12、【解析】由題意,,,只需求出即可.【詳解】由題意,,因為,所以,,所以.故答案為:【點睛】本題考查三角恒等變換中的給值求值問題,涉及到三角函數(shù)的定義及配角的方法,考查學(xué)生的運(yùn)算求解能力,是一道中檔題.13、2【解析】根據(jù)扇形的面積公式即可求解.【詳解】解:因為扇形的半徑為2,弧長為2,所以該扇形的面積為,故答案為:2.14、【解析】根據(jù)題意求出函數(shù)和圖像,畫出圖像根據(jù)圖像解題即可.【詳解】因為滿足,即;又由,可得,因為當(dāng)時,所以當(dāng)時,,所以,即;所以當(dāng)時,,所以,即;根據(jù)解析式畫出函數(shù)部分圖像如下所示;因為對任意,恒成立,根據(jù)圖像當(dāng)時,函數(shù)與圖像交于點,即的橫坐標(biāo)即為的最大值才能符合題意,所以,解得,所以實數(shù)的取值范圍是:.故答案為:.15、1【解析】求出的坐標(biāo),不妨設(shè),,分別過,,分別代入點的坐標(biāo),變形可解得結(jié)果.【詳解】因為,,,所以,,不妨設(shè),,分別過,,則,,則,所以故答案為:116、1【解析】根據(jù)兩直線垂直時,系數(shù)間滿足的關(guān)系列方程即可求解.【詳解】由題意可得:,解得:故答案為:【點睛】本題考查直線垂直的位置關(guān)系,考查理解辨析能力,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)利用函數(shù)的奇偶性結(jié)合條件即得;(2)由題可知在上恒成立,利用函數(shù)的單調(diào)性可求,即得.【小問1詳解】∵當(dāng)時,,∴當(dāng)時,,∴,又是定義在上的偶函數(shù),∴,故當(dāng)時,;【小問2詳解】由在上恒成立,∴在上恒成立,∴又∵與在上單調(diào)遞增,∴,∴,解得或,∴實數(shù)的取值范圍為.18、(1),證明見解析;(2),方案1可以裁剪出面積最大的矩形.【解析】(1)分別用含有的三角函數(shù)表示,寫出矩形的面積,利用三角函數(shù)求最值;(2)利用(1)的結(jié)論,根據(jù)對稱性知,矩形的最大面積為,然后利用作差法比較大小即可【小問1詳解】在圖1中,,,,,,,當(dāng)時,矩形最大面積為,得證.【小問2詳解】在圖(2)中,設(shè)與邊,分別交于點,,由(1)的結(jié)論,可得矩形的最大面積為,根據(jù)對稱性知,矩形的最大面積為.因為為銳角,所以,于是.因此,.故按照方案1可以裁剪出面積最大的矩形,其最大面積為.19、(1),證明見解析(2)(3)【解析】(1)取得到,取得到,取得到,得到答案.(2)證明函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,得到,結(jié)合定義域得到答案.(3)根據(jù)函數(shù)單調(diào)性和奇偶性得到,考慮,,三種情況,得到函數(shù)的最值,解不等式得到答案.【小問1詳解】取得到,得到,取得到,得到,取得到,即,故函數(shù)為偶函數(shù).【小問2詳解】設(shè),則,,故,即,函數(shù)單調(diào)遞減.函數(shù)為偶函數(shù),故函數(shù)在上單調(diào)遞增.,故,且,解得.【小問3詳解】,根據(jù)(2)知:,,恒成立,故,,當(dāng)時,,當(dāng)時,,當(dāng)時,,當(dāng),即時等號成立,,故.綜上所述:,解得,,故.20、(1)(2)【解析】(1)先利用向量的數(shù)量積公式和倍角公式對函數(shù)式進(jìn)行化簡,再利用兩倍角公式以及兩角差的正弦公式進(jìn)行整理,然后根據(jù)最大值為解出的值,最后根據(jù)正弦函數(shù)的性質(zhì)求得函數(shù)的對稱中心;(2)首先通過的取值范圍來確定函數(shù)的范圍,再根據(jù)不等式在上恒成立,推斷出,最后計算得出結(jié)果【詳解】因為的最大值為,所以,由得所以的對稱中心為;(2)因為,所以即,因為不等式在上恒成立,所以即解得,的取值范圍為【點睛】本題考查了向量的相關(guān)性質(zhì)以及
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度生物制藥廠房租賃合同及藥品研發(fā)生產(chǎn)服務(wù)協(xié)議3篇
- 科技力量團(tuán)隊榮耀
- 2025年度精密模具加工委托合同協(xié)議書4篇
- 2025年度柴油發(fā)電機(jī)租賃與環(huán)保檢測服務(wù)協(xié)議3篇
- 二零二五年度出租車租賃運(yùn)營管理承包合同3篇
- 二零二五年度餐飲行業(yè)健康證照辦理服務(wù)合同樣本3篇
- 2025年度產(chǎn)學(xué)研合作知識產(chǎn)權(quán)共享合同2篇
- 專業(yè)鉆掘設(shè)備出租協(xié)議規(guī)范文本一
- 個人租車合同協(xié)議書
- 2025年度廁所清潔能源應(yīng)用與改造合同3篇
- 深圳2024-2025學(xué)年度四年級第一學(xué)期期末數(shù)學(xué)試題
- 中考語文復(fù)習(xí)說話要得體
- 《工商業(yè)儲能柜技術(shù)規(guī)范》
- 華中師范大學(xué)教育技術(shù)學(xué)碩士研究生培養(yǎng)方案
- 醫(yī)院醫(yī)學(xué)倫理委員會章程
- xx單位政務(wù)云商用密碼應(yīng)用方案V2.0
- 風(fēng)浪流耦合作用下錨泊式海上試驗平臺的水動力特性試驗
- 高考英語語法專練定語從句含答案
- 有機(jī)農(nóng)業(yè)種植技術(shù)操作手冊
- 【教案】Unit+5+Fun+Clubs+大單元整體教學(xué)設(shè)計人教版(2024)七年級英語上冊
- 2020年的中國海外工程示范營地申報材料及評分標(biāo)準(zhǔn)
評論
0/150
提交評論