




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2025屆北京一零一中學(xué)數(shù)學(xué)高二上期末預(yù)測試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù)是區(qū)間上的可導(dǎo)函數(shù),且導(dǎo)函數(shù)為,則“對任意的,”是“在上為增函數(shù)”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件2.若復(fù)數(shù)z滿足(其中為虛數(shù)單位),則()A. B.C. D.3.已知橢圓的左、右焦點(diǎn)分別為,,點(diǎn)P是橢圓上一點(diǎn)且的最大值為,則橢圓離心率為()A. B.C. D.4.已知點(diǎn)是橢圓上的任意點(diǎn),是橢圓的左焦點(diǎn),是的中點(diǎn),則的周長為()A. B.C. D.5.已知直線的方向向量為,則直線l的傾斜角為()A.30° B.60°C.120° D.150°6.圓的圓心和半徑分別是()A., B.,C., D.,7.已知,,若,則()A.9 B.6C.5 D.38.若雙曲線(,)的一條漸近線經(jīng)過點(diǎn),則雙曲線的離心率為()A. B.C. D.29.下圖稱為弦圖,是我國古代三國時期趙爽為《周髀算經(jīng)》作注時為證明勾股定理所繪制,我們新教材中利用該圖作為“()”的幾何解釋A.如果,,那么B.如果,那么C.對任意實(shí)數(shù)和,有,當(dāng)且僅當(dāng)時等號成立D.如果,那么10.如圖所示,已知是橢圓的左、右焦點(diǎn),為橢圓的上頂點(diǎn),在軸上,,且是的中點(diǎn),為坐標(biāo)原點(diǎn),若點(diǎn)到直線的距離為3,則橢圓的方程為()A B.C. D.11.已知橢圓的兩個焦點(diǎn)分別為,且平行于軸的直線與橢圓交于兩點(diǎn),那么的值為()A. B.C. D.12.已知直線經(jīng)過點(diǎn),且是的方向向量,則點(diǎn)到的距離為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知直線(為常數(shù))和圓,給出下列四個結(jié)論:①當(dāng)變化時,直線恒過定點(diǎn);②直線與圓可能無公共點(diǎn);③若直線與圓有兩個不同交點(diǎn),,則線段的長的最小值為;④對任意實(shí)數(shù),圓上都不存在關(guān)于直線對稱的兩個點(diǎn).其中正確的結(jié)論是______.(寫出所有正確結(jié)論的序號)14.如圖是一個無蓋的正方體盒子展開圖,A,B,C,D是展開圖上的四點(diǎn),BD則在正方體盒子中,AD與平面ABC所成角的正弦值為___________.15.等比數(shù)列中,,,則數(shù)列的公比為____.16.橢圓C:的左、右焦點(diǎn)分別為,,點(diǎn)A在橢圓上,,直線交橢圓于點(diǎn)B,,則橢圓的離心率為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)等差數(shù)列{an}的前n項(xiàng)和記為Sn,且.(1)求數(shù)列{an}的通項(xiàng)公式an(2)記數(shù)列的前n項(xiàng)和為Tn,若,求n的最小值.18.(12分)已知數(shù)列滿足,,,.從①,②這兩個條件中任選一個填在橫線上,并完成下面問題.(1)寫出、,并求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和.19.(12分)已知函數(shù)(1)求在點(diǎn)處的切線方程(2)求直線與曲線圍成的封閉圖形的面積20.(12分)設(shè)等差數(shù)列的前項(xiàng)和為,為各項(xiàng)均為正數(shù)的等比數(shù)列,且,,再從條件①:;②:;③:這三個條件中選擇一個作為已知,解答下列問題:(1)求和的通項(xiàng)公式;(2)設(shè),數(shù)列的前項(xiàng)和為,求證:21.(12分)已知函數(shù).(1)證明:;(2)若函數(shù)有兩個零點(diǎn),求實(shí)數(shù)的取值范圍.22.(10分)已知直線:,直線:.(1)若,求與的距離;(2)若,求與的交點(diǎn)的坐標(biāo).
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】根據(jù)充分條件與必要條件的概念,由導(dǎo)函數(shù)的正負(fù)與函數(shù)單調(diào)性之間關(guān)系,即可得出結(jié)果.【詳解】因?yàn)楹瘮?shù)是區(qū)間上的可導(dǎo)函數(shù),且導(dǎo)函數(shù)為,若“對任意的,”,則在上為增函數(shù);若在上為增函數(shù),則對任意的恒成立,即由“對任意的,”能推出“在上為增函數(shù)”;由“在上為增函數(shù)”不能推出“對任意的,”,因此“對任意的,”是“在上為增函數(shù)”的充分不必要條件.故選:A2、B【解析】利用復(fù)數(shù)的除法化簡復(fù)數(shù),利用復(fù)數(shù)的模長公式可求得結(jié)果.【詳解】,因此,.故選:B3、A【解析】根據(jù)橢圓的定義可得,從而得到,則,其中,再根據(jù)對勾函數(shù)的性質(zhì)求出,即可得到方程,從求出橢圓的離心率;【詳解】解:依題意,所以,又,所以,因?yàn)樵谏蠁握{(diào)遞減,所以當(dāng)時函數(shù)取得最大值,即,即所以,即,所以,解得或(舍去)故選:A4、A【解析】設(shè)橢圓另一個焦點(diǎn)為,連接,利用中位線的性質(zhì)結(jié)合橢圓的定義可求得結(jié)果.【詳解】在橢圓中,,,,如圖,設(shè)橢圓的另一個焦點(diǎn)為,連接,因?yàn)?、分別為、的中點(diǎn),則,則的周長為,故選:A.5、B【解析】利用直線的方向向量求出其斜率,進(jìn)而求出傾斜角作答.【詳解】因直線的方向向量為,則直線l的斜率,直線l的傾斜角,于是得,解得,所以直線l的傾斜角為.故選:B6、D【解析】先化為標(biāo)準(zhǔn)方程,再求圓心半徑即可.【詳解】先化為標(biāo)準(zhǔn)方程可得,故圓心為,半徑為.故選:D.7、D【解析】根據(jù)空間向量垂直的坐標(biāo)表示即可求解.【詳解】.故選:D.8、A【解析】先求出漸近線方程,進(jìn)而將點(diǎn)代入直線方程得到a,b關(guān)系,進(jìn)而求出離心率.【詳解】由題意,雙曲線的漸近線方程為:,而一條漸近線過點(diǎn),則,.故選:A.9、C【解析】設(shè)圖中直角三角形邊長分別為a,b,則斜邊為,則可表示出陰影面積和正方形面積,根據(jù)圖象關(guān)系,可得即可得答案.【詳解】設(shè)圖中全等的直角三角形的邊長分別為a,b,則斜邊為,如圖所示:則四個直角三角形的面積為,正方形的面積為,由圖象可得,四個直角三角形面積之和小于等于正方形的面積,所以,當(dāng)且僅當(dāng)時等號成立,所以對任意實(shí)數(shù)和,有,當(dāng)且僅當(dāng)時等號成立.故選:C10、D【解析】由題設(shè)可得,直線的方程為,點(diǎn)線距離公式表示到直線的距離,又聯(lián)立解得即可得出答案.【詳解】且,則△是等邊三角形,設(shè),則①,∴直線方程為,即,∴到直線的距離為②,又③,聯(lián)立①②③,解得,,故橢圓方程為.故選:D.11、A【解析】根據(jù)橢圓的方程求出,再由橢圓的對稱性及定義求解即可.【詳解】由橢圓的對稱性可知,,所以,又橢圓方程為,所以,解得,所以,故選:A12、B【解析】求出,根據(jù)點(diǎn)到直線的距離的向量公式進(jìn)行求解.【詳解】因?yàn)?,為的一個方向向量,所以點(diǎn)到直線的距離.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、③④【解析】由可判斷①;根據(jù)直線過的定點(diǎn)在圓內(nèi)可判斷②;當(dāng)直線與過圓心的直徑垂直時,求出線段的長度可判斷③;把圓心代入直線的方程可判斷④.【詳解】對于①,,當(dāng)變化時,直線恒過定點(diǎn),故錯誤;對于②,因?yàn)?,所以在圓的內(nèi)部,所以直線與圓總有公共點(diǎn),故錯誤;對于③,當(dāng)直線與過圓心的直徑垂直時,線段的長度的最小,此時,故正確;對于④,把圓心代入直線,得對任意實(shí)數(shù),圓上都不存在關(guān)于直線對稱的兩個點(diǎn),故正確.故答案為:③④.14、##【解析】先復(fù)原正方體,再構(gòu)造線面角后可求正弦值.【詳解】復(fù)原后的正方體如圖所示,設(shè)所在面的正方形的余下的一個頂點(diǎn)為,連接,則平面,故為AD與平面ABC所成角,而,故為AD與平面ABC所成角的正弦值為.故答案為:.15、【解析】根據(jù)等比數(shù)列的定義,結(jié)合已知條件,代值計(jì)算即可求得結(jié)果.【詳解】因?yàn)槭堑缺葦?shù)列,設(shè)其公比為,又,,故可得,解得.故答案為:.16、(也可以)【解析】可以利用條件三角形為等腰直角三角形,設(shè)出邊長,找到邊長與之間等量關(guān)系,然后把等量關(guān)系帶入到勾股定理表達(dá)的等式中,即可求解離心率.【詳解】由題意知三角形為等腰直角三角形,設(shè),則,解得,,在三角形中,由勾股定理得,所以,故答案為:(也可以)三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)an=2n(2)100【解析】(1)由等差數(shù)列的通項(xiàng)公式列出方程組求解即可;(2)由裂項(xiàng)相消求和法得出,再由不等式的性質(zhì)得出n的最小值.【小問1詳解】設(shè)等差數(shù)列{an}的公差為d,依題意有解得,所以an=2n.【小問2詳解】由(1)得,則,所以因?yàn)?,即,解得n>99,所以n的最小值為100.18、(1)條件選擇見解析,,,(2)【解析】(1)選①,推導(dǎo)出數(shù)列為等比數(shù)列,確定該數(shù)列的首項(xiàng)和公比,可求得,并可求得、;選②,推導(dǎo)出數(shù)列是等比數(shù)列,確定該數(shù)列的首項(xiàng)和公比,可求得,可求得,由此可得出、;(2)求得,,分為偶數(shù)、奇數(shù)兩種情況討論,結(jié)合并項(xiàng)求和法以及等比數(shù)列求和公式可求得.【小問1詳解】解:若選①,,且,故數(shù)列是首項(xiàng)為,公比為的等比數(shù)列,,故;若選②,,所以,,且,故數(shù)列是以為首項(xiàng),以為公比的等比數(shù)列,所以,,故,所以,,故,.【小問2詳解】解:由(1)可知,則,所以,.當(dāng)為偶數(shù)時,;當(dāng)為奇數(shù)時,.綜上所述,.19、(1)(2)2【解析】(1)首先求出函數(shù)的導(dǎo)函數(shù),即可求出切線的斜率,再利用點(diǎn)斜式求出切線方程;(2)首先求出兩函數(shù)的交點(diǎn)坐標(biāo),再利用定積分及微積分基本定理計(jì)算可得;【小問1詳解】解:因?yàn)椋?,所以切線的斜率,切線過點(diǎn),切線的方程為,即【小問2詳解】解:由題知,即解得或,即或或,直線與曲線于則所求圖形的面積20、(1)an=n,bn=(2)證明見解析【解析】(1)設(shè)等差數(shù)列的公差為d,等比數(shù)列的公比為q,q>0,由等差數(shù)列和等比數(shù)列的通項(xiàng)公式及前n項(xiàng)和公式,列出方程組求解即可得答案;(2)求出,利用裂項(xiàng)相消求和法求出前項(xiàng)和為,即可證明【小問1詳解】解:設(shè)等差數(shù)列的公差為d,等比數(shù)列的公比為q,q>0,選①:,又,,可得1+5d=3q,1+4d=5d,解得d=1,q=2,則an=1+n﹣1=n,bn=;選②:,又a1=b1=1,a6=3b2,可得1+5d=3q,q4=4(q3﹣q2),解得d=1,q=2,則an=1+n﹣1=n,bn=;選③:,又a1=b1=1,a6=3b2,可得1+5d=3q,8+28d=6(3+3d),解得d=1,q=2,則an=1+n﹣1=n,bn=;小問2詳解】證明:由(1)知,,,所以21、(1)證明見解析;(2).【解析】(1)令,求導(dǎo)得到函數(shù)的增區(qū)間為,減區(qū)間為,故,得到證明.(2),討論和兩種情況,計(jì)算函數(shù)的單調(diào)區(qū)間得到,解得答案.【詳解】(1)令,有,令可得,故函數(shù)的增區(qū)間為,減區(qū)間為,,故有.(2)由①當(dāng)時,,此時函數(shù)的減區(qū)間為,沒有增區(qū)間;②當(dāng)時,令可得,此時函數(shù)的增區(qū)間為,減區(qū)間為.若函數(shù)有兩個零點(diǎn),必須且,可得,此時,又由,當(dāng)時,由(1)有,取時,顯然有,當(dāng)時,故函數(shù)有兩個零點(diǎn)時,實(shí)數(shù)的取值范圍為.【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)證明不等式,根據(jù)零點(diǎn)求參數(shù),意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.22、(1).(2).【解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 華南農(nóng)業(yè)大學(xué)珠江學(xué)院《影視后期編輯實(shí)踐》2023-2024學(xué)年第二學(xué)期期末試卷
- 浙江外國語學(xué)院《普通生物學(xué)細(xì)胞分子遺傳部分》2023-2024學(xué)年第二學(xué)期期末試卷
- 廣東財(cái)貿(mào)職業(yè)學(xué)院《大學(xué)英語視聽說》2023-2024學(xué)年第二學(xué)期期末試卷
- 江蘇醫(yī)藥職業(yè)學(xué)院《細(xì)菌學(xué)檢驗(yàn)》2023-2024學(xué)年第二學(xué)期期末試卷
- 平頂山工業(yè)職業(yè)技術(shù)學(xué)院《光學(xué)設(shè)計(jì)》2023-2024學(xué)年第二學(xué)期期末試卷
- 常州機(jī)電職業(yè)技術(shù)學(xué)院《短片拍攝與剪輯》2023-2024學(xué)年第二學(xué)期期末試卷
- 阜陽師范大學(xué)《數(shù)字音頻編輯》2023-2024學(xué)年第二學(xué)期期末試卷
- 新疆天山職業(yè)技術(shù)大學(xué)《海洋生態(tài)與海洋生物的保護(hù)》2023-2024學(xué)年第二學(xué)期期末試卷
- 催收pk活動方案
- 兒歌歌手比賽活動方案
- 中國近現(xiàn)代史綱要智慧樹知到課后章節(jié)答案2023年下西南交通大學(xué)
- 混凝土抗?jié)B檢測報(bào)告
- 尾礦治理工程施工方案
- 社會主義發(fā)展簡史智慧樹知到課后章節(jié)答案2023年下北方工業(yè)大學(xué)
- 藥品追溯管理制度
- 2023年1月福建省普通高中學(xué)業(yè)水平合格性考試通用技術(shù)+答案
- 超微細(xì)粉體與復(fù)合化技術(shù)之一(粉體與粉體加工技術(shù))
- Unit 1 A New Start School clubs Making a plan課件 -2023-2024學(xué)年高中英語外研版(2019)必修第一冊
- (完整版)土的參數(shù)換算(計(jì)算飽和重度)
- 第一講 馬克思主義中國化時代化新的飛躍PPT習(xí)概論2023優(yōu)化版教學(xué)課件
- 2023屆四川省樂山市市中區(qū)四年級數(shù)學(xué)第二學(xué)期期末考試試題含解析
評論
0/150
提交評論