版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
安徽省馬鞍山中加雙語(yǔ)學(xué)校2025屆高二數(shù)學(xué)第一學(xué)期期末考試模擬試題注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.雙曲線的焦點(diǎn)到漸近線的距離為()A.1 B.2C. D.2.已知函數(shù),,當(dāng)時(shí),不等式恒成立,則實(shí)數(shù)的取值范圍為()A. B.C. D.3.如圖,在正方體中,是側(cè)面內(nèi)一動(dòng)點(diǎn),若到直線與直線的距離相等,則動(dòng)點(diǎn)的軌跡所在的曲線是()A.直線 B.圓C.雙曲線 D.拋物線4.第24屆冬季奧林匹克運(yùn)動(dòng)會(huì),將于2022年2月4日在北京市和張家口市聯(lián)合舉行.北京將成為奧運(yùn)史上第一個(gè)舉辦過夏季奧林匹克運(yùn)動(dòng)會(huì)和冬季奧林匹克運(yùn)動(dòng)會(huì)的城市.根據(jù)安排,國(guó)家體育場(chǎng)(鳥巢)成為北京冬奧會(huì)開、閉幕式的場(chǎng)館.國(guó)家體育場(chǎng)“鳥巢”的鋼結(jié)構(gòu)鳥瞰圖如圖所示,內(nèi)外兩圈的鋼骨架是兩個(gè)“相似橢圓”(離心率相同的兩個(gè)橢圓我們稱為“相似橢圓”).如圖,由外層橢圓長(zhǎng)軸一端點(diǎn)A和短軸一端點(diǎn)B分別向內(nèi)層橢圓引切線AC,BD,若兩切線斜率之積等于,則橢圓的離心率為()A. B.C. D.5.已知,向量,,若,則x的值為()A.-1 B.1C.-2 D.26.過雙曲線的左焦點(diǎn)作x軸的垂線交曲線C于點(diǎn)P,為右焦點(diǎn),若,則雙曲線的離心率為()A. B.C. D.7.三棱錐A-BCD中,E,F(xiàn),H分別為邊CD,AD,BC的中點(diǎn),BE,DH的交點(diǎn)為G,則的化簡(jiǎn)結(jié)果為()A. B.C. D.8.已知,那么函數(shù)在x=π處的瞬時(shí)變化率為()A. B.0C. D.9.若數(shù)列等差數(shù)列,a1=1,,則a5=()A. B.C. D.10.已知圓與圓沒有公共點(diǎn),則實(shí)數(shù)a的取值范圍為()A. B.C. D.11.年底以來,我國(guó)多次在重要場(chǎng)合和政策文件中提及碳中和,碳中和指的是二氧化碳排放量和吸收量可以正負(fù)抵消,實(shí)現(xiàn)二氧化碳“零排放”.二氧化碳的分子是由一個(gè)碳原子和兩個(gè)氧原子構(gòu)成的,其結(jié)構(gòu)式為.已知氧有、、三種天然同位素,碳有、、三種天然同位素,則由上述同位素可構(gòu)成的不同二氧化碳分子共有()A.種 B.種C.種 D.種12.已知函數(shù),,若對(duì)任意的,,都有成立,則實(shí)數(shù)的取值范圍是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.圓與圓的公共弦長(zhǎng)為______14.在圓M:中,過點(diǎn)的最長(zhǎng)弦和最短弦分別為AC和BD,則四邊形ABCD的面積為___________.15.已知函數(shù)在處有極值2,則______.16.如圖,莖葉圖所示數(shù)據(jù)平均分為91,則數(shù)字x應(yīng)該是__________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列的前項(xiàng)和(1)求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和18.(12分)在①,②,③,,成等比數(shù)列這三個(gè)條件中選擇符合題意的兩個(gè)條件,補(bǔ)充在下面的問題中,并求解.已知數(shù)列中,公差不等于的等差數(shù)列滿足_________,求數(shù)列的前項(xiàng)和.19.(12分)設(shè)a,b是實(shí)數(shù),若橢圓過點(diǎn),且離心率為.(1)求橢圓E的標(biāo)準(zhǔn)方程;(2)過橢圓E的上頂點(diǎn)P分別作斜率為,的兩條直線與橢圓交于C,D兩點(diǎn),且,試探究過C,D兩點(diǎn)的直線是否過定點(diǎn)?若過定點(diǎn),求出定點(diǎn)坐標(biāo);否則,說明理由.20.(12分)已知圓經(jīng)過,且圓心C在直線上(1)求圓的標(biāo)準(zhǔn)方程;(2)若直線:與圓存在公共點(diǎn),求實(shí)數(shù)的取值范圍21.(12分)在等差數(shù)列中,,前10項(xiàng)和(1)求列的通項(xiàng)公式;(2)若數(shù)列是首項(xiàng)為1,公比為2的等比數(shù)列,求的前8項(xiàng)和22.(10分)已知點(diǎn),,雙曲線C上除頂點(diǎn)外任一點(diǎn)滿足直線RM與QM的斜率之積為4.(1)求C方程;(2)若直線l過C上的一點(diǎn)P,且與C的漸近線相交于A,B兩點(diǎn),點(diǎn)A,B分別位于第一、第二象限,,求的最小值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】分別求出雙曲線的焦點(diǎn)坐標(biāo)和漸近線方程,利用點(diǎn)到直線的距離公式求出結(jié)果【詳解】雙曲線中,焦點(diǎn)坐標(biāo)為漸近線方程為:∴雙曲線的焦點(diǎn)到漸近線的距離故選:A2、C【解析】由題意得出,構(gòu)造函數(shù),可知函數(shù)在區(qū)間上單調(diào)遞增,可得出對(duì)任意的恒成立,利用參變量分離法可得出,利用導(dǎo)數(shù)求得函數(shù)在區(qū)間上的最大值,由此可求得實(shí)數(shù)的取值范圍.【詳解】函數(shù)的定義域?yàn)?,?dāng)時(shí),恒成立,即,構(gòu)造函數(shù),則,所以,函數(shù)在區(qū)間上為增函數(shù),則對(duì)任意的恒成立,,令,其中,則.,所以函數(shù)在上單調(diào)遞減;又,所以.因此,實(shí)數(shù)的取值范圍是.故選:C.3、D【解析】由到直線的距離等于到點(diǎn)的距離可得到直線的距離等于到點(diǎn)的距離,然后可得答案.【詳解】因?yàn)榈街本€的距離等于到點(diǎn)的距離,所以到直線的距離等于到點(diǎn)的距離,所以動(dòng)點(diǎn)的軌跡是以為焦點(diǎn)、為準(zhǔn)線的拋物線故選:D4、C【解析】設(shè)內(nèi)層橢圓的方程為,可得外層橢圓的方程為,設(shè)切線的方程為,聯(lián)立方程組,根據(jù),得到,同理得到,結(jié)合題意求得,進(jìn)而求得離心率.【詳解】設(shè)內(nèi)層橢圓方程為,因?yàn)閮?nèi)外層的橢圓的離心率相同,可設(shè)外層橢圓的方程為,設(shè)切線的方程為,聯(lián)立方程組,整理得,由,整理得,設(shè)切線的方程為,同理可得,因?yàn)閮汕芯€斜率之積等于,可得,可得,所以離心率為.故選:C.5、D【解析】根據(jù)給定條件利用空間向量垂直的坐標(biāo)表示計(jì)算作答.【詳解】因向量,,,則,解得,所以x的值為2.故選:D6、D【解析】由題知是等腰直角三角形,,又根據(jù)通徑的結(jié)論知,結(jié)合可列出關(guān)于的二次齊次式,即可求解離心率.【詳解】由題知是等腰直角三角形,且,,又,,即,,,即,解得,,.故選:D.7、D【解析】依題意可得為的重心,由三角形重心的性質(zhì)可知,由中位線定理可知,再利用向量的加法運(yùn)算法則即可求出結(jié)果【詳解】解:依題意可得為的重心,,,分別為邊,和的中點(diǎn),,,故選:D8、A【解析】利用導(dǎo)數(shù)運(yùn)算法則求出,根據(jù)導(dǎo)數(shù)的定義即可得到結(jié)論【詳解】由題設(shè),,所以,函數(shù)在x=π處瞬時(shí)變化率為,故選:A9、B【解析】令、可得等差數(shù)列的首項(xiàng)和第三項(xiàng),即可求出第五項(xiàng),從而求出.【詳解】令得,令得,所以數(shù)列的公差為,所以,解得,故選:B.10、B【解析】求出圓、的圓心和半徑,再由兩圓沒有公共點(diǎn)列不等式求解作答.【詳解】圓的圓心,半徑,圓的圓心,半徑,,因圓、沒有公共點(diǎn),則有或,即或,又,解得或,所以實(shí)數(shù)a的取值范圍為.故選:B11、C【解析】分兩種情況討論:兩個(gè)氧原子相同、兩個(gè)氧原子不同,分別計(jì)算出兩種情況下二氧化碳分子的個(gè)數(shù),利用分類加法計(jì)數(shù)原理可得結(jié)果.【詳解】分以下兩種情況討論:若兩個(gè)氧原子相同,此時(shí)二氧化碳分子共有種;若兩個(gè)氧原子不同,此時(shí)二氧化碳分子共有種.由分類加法計(jì)數(shù)原理可知,由上述同位素可構(gòu)成的不同二氧化碳分子共有種.故選:C.12、B【解析】根據(jù)題意,將問題轉(zhuǎn)化為對(duì)任意的,,利用導(dǎo)數(shù)求得的最大值,再分離參數(shù),構(gòu)造函數(shù),利用導(dǎo)數(shù)求其最大值,即可求得參數(shù)的取值范圍.【詳解】由題可知:對(duì)任意的,,都有恒成立,故可得對(duì)任意的,;又,則,故在單調(diào)遞減,在單調(diào)遞增,又,,則當(dāng)時(shí),,.對(duì)任意的,,即,恒成立.也即,不妨令,則,故在單調(diào)遞增,在單調(diào)遞減.故,則只需.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】?jī)蓤A方程相減可得公共弦所在直線方程,即該直線截其中一圓求弦長(zhǎng)即可【詳解】圓與圓兩式相減得,公共弦所在直線方程為:圓,圓心為到公共弦的距離為:公共弦長(zhǎng)故答案為:14、【解析】首先將圓的方程配成標(biāo)準(zhǔn)式,即可得到圓心坐標(biāo)與半徑,從而可得點(diǎn)在圓內(nèi),即可得到過點(diǎn)的最長(zhǎng)弦、最短弦弦長(zhǎng),即可求出四邊形的面積;【詳解】解:圓M:,即,圓心,半徑,點(diǎn),則,所以點(diǎn)在圓內(nèi),所以過點(diǎn)的最長(zhǎng)弦,又,所以最短弦,所以故答案為:15、6【解析】根據(jù)函數(shù)在處有極值2,可得,解方程組即可得解.【詳解】解:,因?yàn)楹瘮?shù)在處有極值2,所以,即,解得,則,故當(dāng)時(shí),,當(dāng)時(shí),,所以函數(shù)在處有極大值,所以,所以.故答案為:6.16、1【解析】結(jié)合莖葉圖以及平均數(shù)列出方程,即可求出結(jié)果.【詳解】由題意可知,解得,故答案為:1.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)利用與的關(guān)系求數(shù)列的通項(xiàng)公式;(2)利用錯(cuò)位相減法求和即可.【小問1詳解】因?yàn)椋十?dāng)時(shí),,兩式相減得,又由題設(shè)可得,從而的通項(xiàng)公式為:;【小問2詳解】因?yàn)?,,兩式相減得:所以.18、詳見解析【解析】根據(jù)已知求出的通項(xiàng)公式.當(dāng)①②時(shí),設(shè)數(shù)列公差為,利用賦值法得到與的關(guān)系式,列方程求出與,求出,寫出的通項(xiàng)公式,可得數(shù)列的通項(xiàng)公式,利用錯(cuò)位相減法求和即可;選②③時(shí),設(shè)數(shù)列公差為,根據(jù)題意得到與的關(guān)系式,解出與,寫出的通項(xiàng)公式,可得數(shù)列的通項(xiàng)公式,利用錯(cuò)位相減法求和即可;選①③時(shí),設(shè)數(shù)列公差為,根據(jù)題意得到與的關(guān)系式,發(fā)現(xiàn)無解,則等差數(shù)列不存在,故不合題意.【詳解】解:因?yàn)?,,所以是以為首?xiàng),為公比的等比數(shù)列,所以,選①②時(shí),設(shè)數(shù)列公差為,因?yàn)?,所以,因?yàn)?,所以時(shí),,解得,,所以,所以.所以.(i)所以(ii)(i)(ii),得:所以.選②③時(shí),設(shè)數(shù)列公差為,因?yàn)?,所以,即,因?yàn)?,,成等比?shù)列,所以,即,化簡(jiǎn)得,因?yàn)?,所以,從而,所以,所以,(i)所以(ii)(i)(ii),得:,所以.選①③時(shí),設(shè)數(shù)列公差為,因?yàn)?,所以時(shí),,所以.又因?yàn)?,,成等比?shù)列,所以,即,化簡(jiǎn)得,因?yàn)?,所以,從而無解,所以等差數(shù)列不存在,故不合題意.【點(diǎn)睛】本題考查了等差(比)數(shù)列的通項(xiàng)公式,考查了錯(cuò)位相減法在數(shù)列求和中的應(yīng)用,考查了轉(zhuǎn)化能力與方程思想,屬于中檔題.19、(1);(2)過定點(diǎn),坐標(biāo)為.【解析】(1)根據(jù)橢圓的離心率公式,結(jié)合代入法進(jìn)行求解即可;(2)根據(jù)直線斜率公式和一元二次方程根與系數(shù)的關(guān)系進(jìn)行求解即可.【小問1詳解】因?yàn)闄E圓離心率為,所以有.橢圓過點(diǎn),所以,由可解:,所以該橢圓方程為:;【小問2詳解】由(1)可知:,設(shè)直線的方程為:,若,由橢圓的對(duì)稱性可知:,不符合題意,當(dāng)時(shí),直線的方程與橢圓方程聯(lián)立得:,設(shè),,,因?yàn)?,所以,把代入得:,所以有或,解得:或,?dāng)時(shí),直線,直線恒過定點(diǎn),此時(shí)與點(diǎn)重合,不符合題意,當(dāng)時(shí),,直線恒過點(diǎn),當(dāng)直線不存在斜率時(shí),此時(shí),,因?yàn)椋?,兩點(diǎn)不在橢圓上,不符合題意,綜上所述:過C,D兩點(diǎn)的直線過定點(diǎn),定點(diǎn)坐標(biāo)為.【點(diǎn)睛】關(guān)鍵點(diǎn)睛:根據(jù)一元二次方程根與系數(shù)關(guān)系是解題的關(guān)鍵.20、(1)(2)【解析】(1)因?yàn)閳A心在直線上,可設(shè)圓心坐標(biāo)為,利用圓心到圓上兩點(diǎn)的距離相等列出等式求解即可.(2)直線與圓存在公共點(diǎn),即圓心到直線的距離小于等于半徑,列出不等關(guān)系求解即可.【小問1詳解】解:因?yàn)閳A心在直線上,所以設(shè)圓心坐標(biāo)為,因?yàn)閳A經(jīng)過,,所以,即:,解方程得,圓心坐標(biāo)為,半徑為,圓的標(biāo)準(zhǔn)方程為:【小問2詳解】圓心到直線的距離且直線與圓有公共點(diǎn)即21、(1);(2)347.【解析】(1)設(shè)等差數(shù)列的公差為,解方程組即得解;(2)先求出,再分組求和得解.【詳解】解:(1)設(shè)等差數(shù)列的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年版:特許連鎖經(jīng)營(yíng)合同
- 2025年度虛擬現(xiàn)實(shí)娛樂項(xiàng)目合作協(xié)議范本3篇
- 2024年環(huán)保項(xiàng)目委托合同:廢氣處理設(shè)施建設(shè)與運(yùn)營(yíng)
- 2024版智能語(yǔ)音識(shí)別系統(tǒng)研發(fā)合同
- 2024年私借私還轉(zhuǎn)賬借款協(xié)議
- 2024年度債務(wù)轉(zhuǎn)移及債務(wù)清償監(jiān)督合同范本3篇
- 2025年度智能建筑項(xiàng)目監(jiān)理合同補(bǔ)充協(xié)議書3篇
- 2024年綠色制造生產(chǎn)車間承包與環(huán)保責(zé)任承諾書3篇
- 2024年環(huán)保設(shè)備采購(gòu)與安裝承包合同
- 2025年度櫥柜安裝與售后服務(wù)標(biāo)準(zhǔn)合同范本3篇
- 【A公司人力資源招聘管理問題及優(yōu)化建議分析13000字(論文)】
- 鋼結(jié)構(gòu)牛腿計(jì)算
- 泌尿外科內(nèi)鏡診療技術(shù)質(zhì)量保障措施及應(yīng)急預(yù)案
- 華北電力大學(xué)(保定)
- Unity3D游戲開發(fā)PPT完整全套教學(xué)課件
- 腎內(nèi)科學(xué)篇病例分析1
- unit5overcomingobstacles公開課一等獎(jiǎng)市賽課一等獎(jiǎng)?wù)n件
- 玻璃安裝應(yīng)急預(yù)案
- 五十音圖+あ行+課件【高效備課精研+知識(shí)精講提升】 初中日語(yǔ)人教版第一冊(cè)
- 早爆、拒爆事故預(yù)防與處理
- 七年級(jí)美術(shù)上冊(cè)-向日葵-湘教版優(yōu)秀PPT
評(píng)論
0/150
提交評(píng)論