廣東省廣州市華南師范大第二附屬中學2024-2025學年九年級數(shù)學第一學期開學聯(lián)考試題【含答案】_第1頁
廣東省廣州市華南師范大第二附屬中學2024-2025學年九年級數(shù)學第一學期開學聯(lián)考試題【含答案】_第2頁
廣東省廣州市華南師范大第二附屬中學2024-2025學年九年級數(shù)學第一學期開學聯(lián)考試題【含答案】_第3頁
廣東省廣州市華南師范大第二附屬中學2024-2025學年九年級數(shù)學第一學期開學聯(lián)考試題【含答案】_第4頁
廣東省廣州市華南師范大第二附屬中學2024-2025學年九年級數(shù)學第一學期開學聯(lián)考試題【含答案】_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

學校________________班級____________姓名____________考場____________準考證號學校________________班級____________姓名____________考場____________準考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共7頁廣東省廣州市華南師范大第二附屬中學2024-2025學年九年級數(shù)學第一學期開學聯(lián)考試題題號一二三四五總分得分A卷(100分)一、選擇題(本大題共8個小題,每小題4分,共32分,每小題均有四個選項,其中只有一項符合題目要求)1、(4分)已知一組數(shù)據(jù)1,l,,7,3,5,3,1的眾數(shù)是1,則這組數(shù)據(jù)的中位數(shù)是().A.1 B.1.5 C.3 D.52、(4分)下列各數(shù):其中無理數(shù)的個數(shù)是()A.4 B.3 C.2 D.13、(4分)劉翔在出征北京奧運會前刻苦進行110米跨欄訓練,教練對他20次的訓練成績進行統(tǒng)計分析,判斷他的成績是否穩(wěn)定,則教練需要知道劉翔這20次成績的()A.眾數(shù) B.平均數(shù) C.頻數(shù) D.方差4、(4分)如圖,把矩形ABCD沿EF翻折,點B恰好落在AD邊的B′處,若AE=2,DE=6,∠EFB=60°,則矩形ABCD的面積是()A.12 B.24 C.12 D.165、(4分)甲、乙兩家商場平時以同樣價格出售相同的商品,春節(jié)期間兩家商場都讓利酬賓,如圖是購買甲、乙兩家商場該商品的實際金額、(元)與原價(元)的函數(shù)圖象,下列說法正確的是()A.當時,選甲更省錢 B.當時,甲、乙實際金額一樣C.當時,選乙更省錢 D.當時,選甲更省錢6、(4分)如圖,將矩形紙片ABCD沿其對角線AC折疊,使點B落到點B′的位置,AB′與CD交于點E,若AB=8,AD=3,則圖中陰影部分的周長為()A.16 B.19 C.22 D.257、(4分)如圖,在?ABCD中,BF平分∠ABC,交AD于點F,CE平分∠BCD交AD于點E,AB=6,BC=10,則EF長為()A.1 B.2 C.3 D.48、(4分)甲隊修路120m與乙隊修路100m所用天數(shù)相同,已知甲隊比乙隊每天多修10m,設甲隊每天修路xm.依題意,下面所列方程正確的是A. B. C. D.二、填空題(本大題共5個小題,每小題4分,共20分)9、(4分)在□ABCD中,O是對角線的交點,那么____.10、(4分)分解因式:=______.11、(4分)如圖,直線y=-x+m與y=nx+4n的交點的橫坐標為-2,則關于x的不等式-x+m>nx+4n>0的解集為___________.12、(4分)有一段斜坡,水平距離為120米,高50米,在這段斜坡上每隔6.5米種一棵樹(兩端各種一棵樹),則從上到下共種____棵樹.13、(4分)若在實數(shù)范圍內(nèi)有意義,則的取值范圍是____________.三、解答題(本大題共5個小題,共48分)14、(12分)將含有45°角的直角三角板ABC和直尺如圖擺放在桌子上,然后分別過A、B兩個頂點向直尺作兩條垂線段AD,BE.(1)請寫出圖中的一對全等三角形并證明;(2)你能發(fā)現(xiàn)并證明線段AD,BE,DE之間的關系嗎?15、(8分)已知一次函數(shù)y1=kx+b(k≠0)與反比例函數(shù)y2=(m≠0)相交于A和B兩點,且A點坐標為(1,1),B點的橫坐標為﹣1.(1)求反比例函數(shù)和一次函數(shù)的解析式;(2)根據(jù)圖象直接寫出使得y1>y2時,x的取值范圍.16、(8分)在一條東西走向河的一側有一村莊C,河邊原有兩個取水點A,B,其中AB=AC,由于某種原因,由C到A的路現(xiàn)在已經(jīng)不通,某村為方便村民取水決定在河邊新建一個取水點H(A、H、B在一條直線上),并新修一條路CH,測得CB=3千米,CH=2.4千米,HB=1.8千米.(1)問CH是否為從村莊C到河邊的最近路?(即問:CH與AB是否垂直?)請通過計算加以說明;(2)求原來的路線AC的長.17、(10分)如圖,直線L:與x軸、y軸分別交于A、B兩點,在y軸上有一點C(0,4),線段OA上的動點M(與O,A不重合)從A點以每秒1個單位的速度沿x軸向左移動。(1)求A、B兩點的坐標;(2)求△COM的面積S與M的移動時間t之間的函數(shù)關系式,并寫出t的取值范圍;(3)當t何值時△COM≌△AOB,并求此時M點的坐標。18、(10分)已知一次函數(shù)圖像過點P(0,6),且平行于直線y=-2x(1)求該一次函數(shù)的解析式(2)若點A(,a)、B(2,b)在該函數(shù)圖像上,試判斷a、b的大小關系,并說明理由。B卷(50分)一、填空題(本大題共5個小題,每小題4分,共20分)19、(4分)如圖,在平面直角坐標系中,已知△ABC與△DEF位似,原點O是位似中心,位似比,若AB=1.5,則DE=_____.20、(4分)一組數(shù)據(jù)1,3,5,7,9的方差為________.21、(4分)已知一次函數(shù)的圖象如圖,根據(jù)圖中息請寫出不等式的解集為__________.22、(4分)計算:____.23、(4分)若直線經(jīng)過點和點,則的值是_____.二、解答題(本大題共3個小題,共30分)24、(8分)已知四邊形ABCD是矩形,對角線AC和BD相交于點F,DE//AC,AE//BD.(1)求證:四邊形DEAF是菱形;(2)若AE=CD,求∠DFC的度數(shù).25、(10分)如圖,在平行四邊形ABCD中,E為BC邊上一點,連結AE、BD且AE=AB(1)求證:∠ABE=∠EAD;(2)若∠AEB=2∠ADB,求證:四邊形ABCD是菱形.26、(12分)一次函數(shù)y1=kx+b和y2=﹣4x+a的圖象如圖所示,且A(0,4),C(﹣2,0).(1)由圖可知,不等式kx+b>0的解集是;(2)若不等式kx+b>﹣4x+a的解集是x>1.①求點B的坐標;②求a的值.

參考答案與詳細解析一、選擇題(本大題共8個小題,每小題4分,共32分,每小題均有四個選項,其中只有一項符合題目要求)1、B【解析】

數(shù)據(jù)1,1,x,7,3,2,3,1的眾數(shù)是1,說明1出現(xiàn)的次數(shù)最多,所以當x=1時,1出現(xiàn)3次,次數(shù)最多,是眾數(shù);再把這組數(shù)據(jù)從小到大排列:1,1,1,1,3,3,2,7,處于中間位置的數(shù)是1和3,所以中位數(shù)是:(1+3)÷1=1.2.故選B.2、D【解析】

依據(jù)無理數(shù)的三種常見類型進行判斷即可.【詳解】解:在中,是無理數(shù),有1個,故選:D.此題主要考查了無理數(shù)的定義,注意帶根號的要開不盡方才是無理數(shù),無限不循環(huán)小數(shù)為無理數(shù).如π,,0.8080080008…(每兩個8之間依次多1個0)等形式.3、D【解析】

根據(jù)只有方差是反映數(shù)據(jù)的波動大小的量,由此即可解答.【詳解】眾數(shù)、平均數(shù)是反映一組數(shù)據(jù)的集中趨勢,而頻數(shù)是數(shù)據(jù)出現(xiàn)的次數(shù),只有方差是反映數(shù)據(jù)的波動大小的.所以為了判斷成績是否穩(wěn)定,需要知道的是方差.故選D.本題考查統(tǒng)計學的相關知識.注意:眾數(shù)、平均數(shù)是反映一組數(shù)據(jù)的集中趨勢,而頻數(shù)是數(shù)據(jù)出現(xiàn)的次數(shù);方差是用來衡量一組數(shù)據(jù)波動大小的量,方差越大,表明這組數(shù)據(jù)偏離平均數(shù)越大,即波動越大,數(shù)據(jù)越不穩(wěn)定;反之,方差越小,表明這組數(shù)據(jù)分布比較集中,各數(shù)據(jù)偏離平均數(shù)越小,即波動越小,數(shù)據(jù)越穩(wěn)定.4、D【解析】如圖,連接BE,∵在矩形ABCD中,AD∥BC,∠EFB=60°,∴∠AEF=110°-∠EFB=110°-60°=120°,∠DEF=∠EFB=60°.∵把矩形ABCD沿EF翻折點B恰好落在AD邊的B′處,∴∠BEF=∠DEF=60°.∴∠AEB=∠AEF-∠BEF=120°-60°=60°.在Rt△ABE中,AB=AE?tan∠AEB=2tan60°=2.∵AE=2,DE=6,∴AD=AE+DE=2+6=1.∴矩形ABCD的面積=AB?AD=2×1=16.故選D.考點:翻折變換(折疊問題),矩形的性質,平行的性質,銳角三角函數(shù)定義,特殊角的三角函數(shù)值.5、D【解析】

根據(jù)函數(shù)圖象和圖象中的數(shù)據(jù)可知原價時,函數(shù)在上方,花費較貴,故乙商場較劃算;當x=600時==480,甲乙商場花費一樣;當時函數(shù)在上方,花費較貴,故甲商場較劃算【詳解】據(jù)函數(shù)圖象和圖象中的數(shù)據(jù)可知原價時,函數(shù)在上方,花費較貴,故乙商場較劃算;當x=600時==480,甲乙商場花費一樣;當時函數(shù)在上方,花費較貴,故甲商場較劃算A.當時,選乙更省錢,故A選項錯誤;B.當時,選乙更省錢,故B選項錯誤;C.當時,甲、乙實際金額一樣,故C選項錯誤;D.當時,選甲更省錢,故D選項正確;故答案為:D本題考查了一次函數(shù)與方案選擇問題,能夠正確看懂函數(shù)圖像,進行選擇方案是解題的關鍵.6、C【解析】

首先由四邊形ABCD為矩形及折疊的特性,得到B′C=BC=AD,∠B′=∠B=∠D=90°,∠B′EC=∠DEA,得到△AED≌△CEB′,得出EA=EC,再由陰影部分的周長為AD+DE+EA+EB′+B′C+EC,即矩形的周長解答即可.【詳解】解:∵四邊形ABCD為矩形,∴B′C=BC=AD,∠B′=∠B=∠D=90°∵∠B′EC=∠DEA,在△AED和△CEB′中,,∴△AED≌△CEB′(AAS);∴EA=EC,∴陰影部分的周長為AD+DE+EA+EB′+B′C+EC,=AD+DE+EC+EA+EB′+B′C,=AD+DC+AB′+B′C,=3+8+8+3,=22,故選:C.本題主要考查了圖形的折疊問題,全等三角形的判定和性質,及矩形的性質.熟記翻折前后兩個圖形能夠重合找出相等的角是解題的關鍵.7、B【解析】

根據(jù)平行四邊形的性質可得∠AFB=∠FBC,由角平分線可得∠ABF=∠FBC,所以∠AFB=∠ABF,所以AF=AB=1,同理可得DF=CD=1,則根據(jù)EF=AF+DF-AD即可求解.【詳解】∵四邊形ABCD是平行四邊形,∴AD∥BC,AD=BC=10,DC=AB=1.∴∠AFB=∠FBC.∵BF平分∠ABC,∴∠ABF=∠FBC.∴∠AFB=∠ABF.∴AF=AB=1.同理可得DF=DC=1.∴EF=AF+DF﹣AD=1+1﹣10=2.故選:B.本題主要考查了平行四邊形的性質、角平分線的定義,解題的關鍵是依據(jù)數(shù)學模型“角平分線+平行線=等腰三角形”轉化線段.8、A【解析】

甲隊每天修路xm,則乙隊每天修(x-10)m,因為甲、乙兩隊所用的天數(shù)相同,所以,.故選A.二、填空題(本大題共5個小題,每小題4分,共20分)9、【解析】

由向量的平行四邊形法則及相等向量的概念可得答案.【詳解】解:因為:□ABCD,所以,,所以:.故答案為:.本題考查向量的平行四邊形法則,掌握向量的平行四邊形法則是解題的關鍵.10、x(x+2)(x﹣2).【解析】試題分析:==x(x+2)(x﹣2).故答案為x(x+2)(x﹣2).考點:提公因式法與公式法的綜合運用;因式分解.11、【解析】

令時,解得,則與x軸的交點為(﹣4,0),再根據(jù)圖象分析即可判斷.【詳解】令時,解得,故與x軸的交點為(﹣4,0).由函數(shù)圖象可得,當時,函數(shù)的圖象在x軸上方,且其函數(shù)圖象在函數(shù)圖象的下方,故解集是.故答案為:.本題考查了一次函數(shù)與一元一次不等式,根據(jù)兩函數(shù)圖象的上下位置關系找出不等式的解集是解題的關鍵.12、21【解析】

先利用勾股定理求出斜邊為130米,根據(jù)數(shù)的間距可求出樹的棵數(shù).【詳解】∵斜坡的水平距離為120米,高50米,∴斜坡長為米,又∵樹的間距為6.5,∴可種130÷6.5+1=21棵.此題主要考察勾股定理的的應用.13、且.【解析】分析:根據(jù)分式有意義和二次根式有意義的條件解題.詳解:因為在實數(shù)范圍內(nèi)有意義,所以x≥0且x-1≠0,則x≥0且x≠1.故答案為x≥0且x≠1.點睛:本題考查了分式和二次根式有意義的條件,分式有意義的條件是分母不等于0;二次根式有意義的條件是被開方數(shù)是非負數(shù),代數(shù)式既有分式又有二次根式時,分式與二次根式都要有意義.三、解答題(本大題共5個小題,共48分)14、(1)△ADC≌△CEB(2)AD=BE+DE【解析】

(1)結論:△ADC≌△CEB.根據(jù)AAS證明即可;(2)由三角形全等的性質即可解決問題;【詳解】解:(1)結論:△ADC≌△CEB.理由:∵AD⊥CE,BE⊥CE,∴∠ACB=∠ADC=∠CEB=90°,∴∠ACD+∠CAD=90°,∠ACD+∠ECB=90°,∴∠CAD=∠ECB,∵AC=CB,∴△ADC≌△CEB(AAS).(2)結論:AD=BE+DE.理由:∵△ADC≌△CEB,∴AD=CE,CD=BE,∵CE=CD+DE,∴AD=BE+DE.本題考查全等三角形的判定和性質,解題的關鍵是正確尋找全等三角形的全等的條件,屬于中考常考題型.15、(1)y1=x+2,y2=;(2)由圖象可知y1>y2時,x>1或﹣1<x<2.【解析】

(1)根據(jù)待定系數(shù)法即可解決問題.(2)觀察圖象y1>y2時,y1的圖象在y2的上面,由此即可寫出x的取值范圍.【詳解】解:(1)把點A(1,1)代入y2=,得到m=1,∴y2=.∵B點的橫坐標為﹣1,∴點B坐標(﹣1,﹣1),把A(1,1),B(﹣1,﹣1)代入y1=kx+b得到解得,∴y1=x+2,y2=.(2)由圖象可知y1>y2時,x>1或﹣1<x<2.本題考查反比例函數(shù)與一次函數(shù)的圖象的交點,學會待定系數(shù)法是解決問題的關鍵,學會觀察圖象由函數(shù)值的大小確定自變量的取值范圍,屬于中考常考題型.16、(1)CH是從村莊C到河邊的最近路,理由見解析;(2)原來的路線AC的長為2.5千米.【解析】

(1)根據(jù)勾股定理的逆定理解答即可;(2)根據(jù)勾股定理解答即可【詳解】(1)是,理由是:在△CHB中,∵CH2+BH2=(2.4)2+(1.8)2=9BC2=9∴CH2+BH2=BC2∴CH⊥AB,所以CH是從村莊C到河邊的最近路(2)設AC=x在Rt△ACH中,由已知得AC=x,AH=x﹣1.8,CH=2.4由勾股定理得:AC2=AH2+CH2∴x2=(x﹣1.8)2+(2.4)2解這個方程,得x=2.5,答:原來的路線AC的長為2.5千米.此題考查勾股定理及其逆定理的應用,熟練掌握基礎知識是解題的關鍵.17、(1)A(4,0)、B(0,2)(2)當0<t<4時,S△OCM=8-2t;(3)當t=2秒時△COM≌△AOB,此時M(2,0)【解析】

(1)根據(jù)一次函數(shù)與x軸,y軸的交點坐標特點,即將x=0時;當y=0時代入函數(shù)解析式,即可求得A、B點的坐標.(2)根據(jù)S△OCM=×OC·OM代值即可求得S與M的移動時間t之間的函數(shù)關系式,再根據(jù)M在線段OA上以每秒1個單位運動,且OA=4,即可求得t的取值范圍(3)根據(jù)在△COM和△AOB,已有OA=OC,∠AOB=∠COM,M在線段OA上,故可知OB=OM=2時,△COM≌△AOB,進而即可解題.【詳解】解:(1)對于直線AB:當x=0時,y=2;當y=0時,x=4則A、B兩點的坐標分別為A(4,0)、B(0,2)(2)∵C(0,4),A(4,0)∴OC=OA=4,故M點在0<t<4時,OM=OA-AM=4-t,S△OCM=×4×(4-t)=8-2t;(3)∵當M在OA上,OA=OC∴OB=OM=2時,△COM≌△AOB.∴AM=OA-OM=4-2=2∴動點M從A點以每秒1個單位的速度沿x軸向左移動2個單位,所需要的時間t=2秒鐘,此時M(2,0),本題考查了一次函數(shù)求坐標,一次函數(shù)與三角形綜合應用,解本題的關鍵是掌握動點M的運動時間及運動軌跡,從而解題.18、(1)y=-2x+6(2)答案見解析【解析】

(1)根據(jù)兩一次函數(shù)圖像平行,可得到k的值相等,因此設一次函數(shù)解析式為y=-2x+b,再將點P的坐標代入函數(shù)解析式就可求出b的值,就可得到函數(shù)解析式;(2)利用一次函數(shù)的性質:k<0時,y隨x的增大而減小,比較點A,B的橫坐標的大小,就可求得a,b的大小關系【詳解】(1)解:∵一次函數(shù)圖像過點P(0,6),且平行于直線y=-2x,∴設這個一次函數(shù)解析式為y=-2x+b∴b=6∴該一次函數(shù)解析式為y=-2x+6;(2)解:∵一次函數(shù)解析式為y=-2x+6,k=-2<0∴y隨x的增大而減??;∵點A(,a)、B(2,b)在該函數(shù)圖像上且,∴a>b此題主要考查了一次函數(shù)的圖象和性質,關鍵是掌握一次函數(shù)圖象平行時,k值相等.一、填空題(本大題共5個小題,每小題4分,共20分)19、4.1【解析】

根據(jù)位似圖形的性質得出AO,DO的長,進而得出,,求出DE的長即可【詳解】∵△ABC與△DEF位似,原點O是位似中心,∴,∵,∴,∴,∴DE=3×1.1=4.1.故答案為4.1.此題考查坐標與圖形性質和位似變換,解題關鍵在于得出AO,DO的長20、8【解析】

根據(jù)方差公式S2=計算即可得出答案.【詳解】解:∵數(shù)據(jù)為1,3,5,7,9,∴平均數(shù)為:=5,∴方差為:[(1-5)2+(3-5)2+(5-5)2+(7-5)2+(9-5)2]=8.故答案為8.本題考查方差的計算,熟記方差公式是解題關鍵.21、x≤1【解析】

觀察函數(shù)圖形得到當x≤1時,一次函數(shù)y=ax+b的函數(shù)值小于2,即ax+b≤2【詳解】解:根據(jù)題意得當x≤1時,ax+b≤2,

即不等式ax+b≤2的解集為:x≤1.

故答案為:x≤1.本題考查了一次函數(shù)與一元一次不等式:從函數(shù)的角度看,就是尋求使一次函數(shù)y=ax+b的值大于(或小于)1的自變量x的取值范圍;從函數(shù)圖象的角度看,就是確定直線y=kx+b在x軸上(或下)方部分所有的點的橫坐標所構成的集合.22、1【解析】

先算括號內(nèi),再算除法即可.【詳解】原式=.故答案為:1.本題考查了二次根式的混合運算:先把二次根式化為最簡二次根式,然后進行二次根式的乘除運算,再合并即可.在二次根式的混合運算中,如能結合題目特點,靈活運用二次根式的性質,選擇恰當?shù)慕忸}途徑,往往能事半功倍.23、4【解析】

分別把和代入中即可求出k和b的值,從而可以得出k-b的值.【詳解】解:∵直線經(jīng)過點和點,∴將代入中得-2=k-3,解得k=1,將代入中得b=-3,∴k-b=1-(-3)=4,故答案為4.本題考查一次函數(shù)的應用,解題的關鍵是能根據(jù)函數(shù)圖象上的點與函數(shù)的解析式的關系列出關于k和b的一元一次方程,并分別求出k和b的值.二、解答題(本大題共3個小題,共30分)24、(1)證明見解析;(2)∠DFC=60【解析】

(1)根據(jù)一組鄰邊相等的平行四邊形是菱形證明即可;(2)利用菱形的性質證明ΔFDC為等邊三角形可得結論.【詳解】解:(1)證明:∵DE∥AC,AE∥BD,∴四邊形DEAF為平行四邊形∵四邊形ABCD為矩形,∴AF=CF=12AC,DF=∴AF=DF=CF∴四邊形DEAF為菱形(2)解:∵四邊形DEAF

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論