版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2025屆咸陽市重點中學數(shù)學高三上期末統(tǒng)考試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知拋物線的焦點為,若拋物線上的點關于直線對稱的點恰好在射線上,則直線被截得的弦長為()A. B. C. D.2.盒子中有編號為1,2,3,4,5,6,7的7個相同的球,從中任取3個編號不同的球,則取的3個球的編號的中位數(shù)恰好為5的概率是()A. B. C. D.3.金庸先生的武俠小說《射雕英雄傳》第12回中有這樣一段情節(jié),“……洪七公道:肉只五種,但豬羊混咬是一般滋味,獐牛同嚼又是一般滋味,一共有幾般變化,我可算不出了”.現(xiàn)有五種不同的肉,任何兩種(含兩種)以上的肉混合后的滋味都不一樣,則混合后可以組成的所有不同的滋味種數(shù)為()A.20 B.24 C.25 D.264.已知,函數(shù),若函數(shù)恰有三個零點,則()A. B.C. D.5.阿波羅尼斯(約公元前262~190年)證明過這樣的命題:平面內(nèi)到兩定點距離之比為常數(shù)的點的軌跡是圓.后人將這個圓稱為阿氏圓.若平面內(nèi)兩定點,間的距離為2,動點與,的距離之比為,當,,不共線時,的面積的最大值是()A. B. C. D.6.在鈍角中,角所對的邊分別為,為鈍角,若,則的最大值為()A. B. C.1 D.7.若,,,則()A. B.C. D.8.已知雙曲線的左,右焦點分別為,O為坐標原點,P為雙曲線在第一象限上的點,直線PO,分別交雙曲線C的左,右支于另一點,且,則雙曲線的離心率為()A. B.3 C.2 D.9.已知集合,集合,則等于()A. B.C. D.10.設實數(shù)、滿足約束條件,則的最小值為()A.2 B.24 C.16 D.1411.若函數(shù)f(x)=x3+x2-在區(qū)間(a,a+5)上存在最小值,則實數(shù)a的取值范圍是A.[-5,0) B.(-5,0) C.[-3,0) D.(-3,0)12.設雙曲線(a>0,b>0)的一個焦點為F(c,0)(c>0),且離心率等于,若該雙曲線的一條漸近線被圓x2+y2﹣2cx=0截得的弦長為2,則該雙曲線的標準方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.過直線上一動點向圓引兩條切線MA,MB,切點為A,B,若,則四邊形MACB的最小面積的概率為________.14.已知函數(shù)在處的切線與直線平行,則為________.15.已知復數(shù),且滿足(其中為虛數(shù)單位),則____.16.已知集合,若,且,則實數(shù)所有的可能取值構成的集合是________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)與的圖象關于直線對稱.(為自然對數(shù)的底數(shù))(1)若的圖象在點處的切線經(jīng)過點,求的值;(2)若不等式恒成立,求正整數(shù)的最小值.18.(12分)已知函數(shù),其中.(1)函數(shù)在處的切線與直線垂直,求實數(shù)的值;(2)若函數(shù)在定義域上有兩個極值點,且.①求實數(shù)的取值范圍;②求證:.19.(12分)在直角坐標系中,點的坐標為,直線的參數(shù)方程為(為參數(shù),為常數(shù),且).以直角坐標系的原點為極點,軸的正半軸為極軸,且兩個坐標系取相等的長度單位,建立極坐標系,圓的極坐標方程為.設點在圓外.(1)求的取值范圍.(2)設直線與圓相交于兩點,若,求的值.20.(12分)設函數(shù).(1)當時,求不等式的解集;(2)當時,求實數(shù)的取值范圍.21.(12分)在平面直角坐標系xOy中,曲線C1的參數(shù)方程為(φ為參數(shù)),在以O為極點,x軸的正半軸為極軸的極坐標系中,曲線C2是圓心為(2,),半徑為1的圓.(1)求曲線C1的普通方程和C2的直角坐標方程;(2)設M為曲線C1上的點,N為曲線C2上的點,求|MN|的取值范圍.22.(10分)我國在貴州省平塘縣境內(nèi)修建的500米口徑球面射電望遠鏡(FAST)是目前世界上最大單口徑射電望遠鏡.使用三年來,已發(fā)現(xiàn)132顆優(yōu)質(zhì)的脈沖星候選體,其中有93顆已被確認為新發(fā)現(xiàn)的脈沖星,脈沖星是上世紀60年代天文學的四大發(fā)現(xiàn)之一,脈沖星就是正在快速自轉的中子星,每一顆脈沖星每兩脈沖間隔時間(脈沖星的自轉周期)是-定的,最小小到0.0014秒,最長的也不過11.765735秒.某-天文研究機構觀測并統(tǒng)計了93顆已被確認為新發(fā)現(xiàn)的脈沖星的自轉周期,繪制了如圖的頻率分布直方圖.(1)在93顆新發(fā)現(xiàn)的脈沖星中,自轉周期在2至10秒的大約有多少顆?(2)根據(jù)頻率分布直方圖,求新發(fā)現(xiàn)脈沖星自轉周期的平均值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
由焦點得拋物線方程,設點的坐標為,根據(jù)對稱可求出點的坐標,寫出直線方程,聯(lián)立拋物線求交點,計算弦長即可.【詳解】拋物線的焦點為,則,即,設點的坐標為,點的坐標為,如圖:∴,解得,或(舍去),∴∴直線的方程為,設直線與拋物線的另一個交點為,由,解得或,∴,∴,故直線被截得的弦長為.故選:B.【點睛】本題主要考查了拋物線的標準方程,簡單幾何性質(zhì),點關于直線對稱,屬于中檔題.2、B【解析】
由題意,取的3個球的編號的中位數(shù)恰好為5的情況有,所有的情況有種,由古典概型的概率公式即得解.【詳解】由題意,取的3個球的編號的中位數(shù)恰好為5的情況有,所有的情況有種由古典概型,取的3個球的編號的中位數(shù)恰好為5的概率為:故選:B【點睛】本題考查了排列組合在古典概型中的應用,考查了學生綜合分析,概念理解,數(shù)學運算的能力,屬于中檔題.3、D【解析】
利用組合的意義可得混合后所有不同的滋味種數(shù)為,再利用組合數(shù)的計算公式可得所求的種數(shù).【詳解】混合后可以組成的所有不同的滋味種數(shù)為(種),故選:D.【點睛】本題考查組合的應用,此類問題注意實際問題的合理轉化,本題屬于容易題.4、C【解析】
當時,最多一個零點;當時,,利用導數(shù)研究函數(shù)的單調(diào)性,根據(jù)單調(diào)性畫函數(shù)草圖,根據(jù)草圖可得.【詳解】當時,,得;最多一個零點;當時,,,當,即時,,在,上遞增,最多一個零點.不合題意;當,即時,令得,,函數(shù)遞增,令得,,函數(shù)遞減;函數(shù)最多有2個零點;根據(jù)題意函數(shù)恰有3個零點函數(shù)在上有一個零點,在,上有2個零點,如圖:且,解得,,.故選.【點睛】遇到此類問題,不少考生會一籌莫展.由于方程中涉及兩個參數(shù),故按“一元化”想法,逐步分類討論,這一過程中有可能分類不全面、不徹底.5、A【解析】
根據(jù)平面內(nèi)兩定點,間的距離為2,動點與,的距離之比為,利用直接法求得軌跡,然后利用數(shù)形結合求解.【詳解】如圖所示:設,,,則,化簡得,當點到(軸)距離最大時,的面積最大,∴面積的最大值是.故選:A.【點睛】本題主要考查軌跡的求法和圓的應用,還考查了數(shù)形結合的思想和運算求解的能力,屬于中檔題.6、B【解析】
首先由正弦定理將邊化角可得,即可得到,再求出,最后根據(jù)求出的最大值;【詳解】解:因為,所以因為所以,即,,時故選:【點睛】本題考查正弦定理的應用,余弦函數(shù)的性質(zhì)的應用,屬于中檔題.7、C【解析】
利用指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性比較、、三個數(shù)與和的大小關系,進而可得出、、三個數(shù)的大小關系.【詳解】對數(shù)函數(shù)為上的增函數(shù),則,即;指數(shù)函數(shù)為上的增函數(shù),則;指數(shù)函數(shù)為上的減函數(shù),則.綜上所述,.故選:C.【點睛】本題考查指數(shù)冪與對數(shù)式的大小比較,一般利用指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性結合中間值法來比較,考查推理能力,屬于基礎題.8、D【解析】
本道題結合雙曲線的性質(zhì)以及余弦定理,建立關于a與c的等式,計算離心率,即可.【詳解】結合題意,繪圖,結合雙曲線性質(zhì)可以得到PO=MO,而,結合四邊形對角線平分,可得四邊形為平行四邊形,結合,故對三角形運用余弦定理,得到,而結合,可得,,代入上式子中,得到,結合離心率滿足,即可得出,故選D.【點睛】本道題考查了余弦定理以及雙曲線的性質(zhì),難度偏難.9、B【解析】
求出中不等式的解集確定出集合,之后求得.【詳解】由,所以,故選:B.【點睛】該題考查的是有關集合的運算的問題,涉及到的知識點有一元二次不等式的解法,集合的運算,屬于基礎題目.10、D【解析】
做出滿足條件的可行域,根據(jù)圖形即可求解.【詳解】做出滿足的可行域,如下圖陰影部分,根據(jù)圖象,當目標函數(shù)過點時,取得最小值,由,解得,即,所以的最小值為.故選:D.【點睛】本題考查二元一次不等式組表示平面區(qū)域,利用數(shù)形結合求線性目標函數(shù)的最值,屬于基礎題.11、C【解析】
求函數(shù)導數(shù),分析函數(shù)單調(diào)性得到函數(shù)的簡圖,得到a滿足的不等式組,從而得解.【詳解】由題意,f′(x)=x2+2x=x(x+2),故f(x)在(-∞,-2),(0,+∞)上是增函數(shù),在(-2,0)上是減函數(shù),作出其圖象如圖所示.令x3+x2-=-,得x=0或x=-3,則結合圖象可知,解得a∈[-3,0),故選C.【點睛】本題主要考查了利用函數(shù)導數(shù)研究函數(shù)的單調(diào)性,進而研究函數(shù)的最值,屬于??碱}型.12、C【解析】
由題得,,又,聯(lián)立解方程組即可得,,進而得出雙曲線方程.【詳解】由題得①又該雙曲線的一條漸近線方程為,且被圓x2+y2﹣2cx=0截得的弦長為2,所以②又③由①②③可得:,,所以雙曲線的標準方程為.故選:C【點睛】本題主要考查了雙曲線的簡單幾何性質(zhì),圓的方程的有關計算,考查了學生的計算能力.二、填空題:本題共4小題,每小題5分,共20分。13、.【解析】
先求圓的半徑,四邊形的最小面積,轉化為的最小值為,求出切線長的最小值,再求的距離也就是圓心到直線的距離,可解得的取值范圍,利用幾何概型即可求得概率.【詳解】由圓的方程得,所以圓心為,半徑為,四邊形的面積,若四邊形的最小面積,所以的最小值為,而,即的最小值,此時最小為圓心到直線的距離,此時,因為,所以,所以的概率為.【點睛】本題考查直線與圓的位置關系,及與長度有關的幾何概型,考查了學生分析問題的能力,難度一般.14、【解析】
根據(jù)題意得出,由此可得出實數(shù)的值.【詳解】,,直線的斜率為,由于函數(shù)在處的切線與直線平行,則.故答案為:.【點睛】本題考查利用函數(shù)的切線與直線平行求參數(shù),解題時要結合兩直線的位置關系得出兩直線斜率之間的關系,考查計算能力,屬于基礎題.15、【解析】
計算出,兩個復數(shù)相等,實部與實部相等,虛部與虛部相等,列方程組求解.【詳解】,所以,所以.故答案為:-8【點睛】此題考查復數(shù)的基本運算和概念辨析,需要熟練掌握復數(shù)的運算法則.16、.【解析】
化簡集合,由,以及,即可求出結論.【詳解】集合,若,則的可能取值為,0,2,3,又因為,所以實數(shù)所有的可能取值構成的集合是.故答案為:.【點睛】本題考查集合與元素的關系,理解題意是解題的關鍵,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)e;(2)2.【解析】
(1)根據(jù)反函數(shù)的性質(zhì),得出,再利用導數(shù)的幾何意義,求出曲線在點處的切線為,構造函數(shù),利用導數(shù)求出單調(diào)性,即可得出的值;(2)設,求導,求出的單調(diào)性,從而得出最大值為,結合恒成立的性質(zhì),得出正整數(shù)的最小值.【詳解】(1)根據(jù)題意,與的圖象關于直線對稱,所以函數(shù)的圖象與互為反函數(shù),則,,設點,,又,當時,,曲線在點處的切線為,即,代入點,得,即,構造函數(shù),當時,,當時,,且,當時,單調(diào)遞增,而,故存在唯一的實數(shù)根.(2)由于不等式恒成立,可設,所以,令,得.所以當時,;當時,,因此函數(shù)在是增函數(shù),在是減函數(shù).故函數(shù)的最大值為.令,因為,,又因為在是減函數(shù).所以當時,.所以正整數(shù)的最小值為2.【點睛】本題考查導數(shù)的幾何意義和利用導數(shù)解決恒成立問題,涉及到單調(diào)性、構造函數(shù)法等,考查函數(shù)思想和計算能力.18、(1);(2)①;②詳見解析.【解析】
(1)由函數(shù)在處的切線與直線垂直,即可得,對其求導并表示,代入上述方程即可解得答案;(2)①已知要求等價于在上有兩個根,且,即在上有兩個不相等的根,由二次函數(shù)的圖象與性質(zhì)構建不等式組,解得答案,最后分析此時單調(diào)性推及極值說明即可;②由①可知,是方程的兩個不等的實根,由韋達定理可表達根與系數(shù)的關系,進而用含的式子表示,令,對求導分析單調(diào)性,即可知道存在常數(shù)使在上單調(diào)遞減,在上單調(diào)遞增,進而求最值證明不等式成立.【詳解】解:(1)依題意,,,故,所以,據(jù)題意可知,,解得.所以實數(shù)的值為.(2)①因為函數(shù)在定義域上有兩個極值點,且,所以在上有兩個根,且,即在上有兩個不相等的根.所以解得.當時,若或,,,函數(shù)在和上單調(diào)遞增;若,,,函數(shù)在上單調(diào)遞減,故函數(shù)在上有兩個極值點,且.所以,實數(shù)的取值范圍是.②由①可知,是方程的兩個不等的實根,所以其中.故,令,其中.故,令,,在上單調(diào)遞增.由于,,所以存在常數(shù),使得,即,,且當時,,在上單調(diào)遞減;當時,,在上單調(diào)遞增,所以當時,,又,,所以,即,故得證.【點睛】本題考查導數(shù)的幾何意義、兩直線的位置關系、由極值點個數(shù)求參數(shù)范圍問題,還考查了利用導數(shù)證明不等式成立,屬于難題.19、(1)(2)【解析】
(1)首先將曲線化為直角坐標方程,由點在圓外,則解得即可;(2)將直線的參數(shù)方程代入圓的普通方程,設、對應的參數(shù)分別為,列出韋達定理,由及在圓的上方,得,即即可解得;【詳解】解:(1)曲線的直角坐標方程為.由點在圓外,得點的坐標為,結合,解得.故的取值范圍是.(2)由直線的參數(shù)方程,得直線過點,傾斜角為,將直線的參數(shù)方程代入,并整理得,其中.設、對應的參數(shù)分別為,則,.由及在圓的上方,得,即,代入①,得,,消去,得,結合,解得.故的值是.【點睛】本題考查極坐標方程化為直角坐標方程,直線的參數(shù)方程的幾何意義的應用,屬于中檔題.20、(1)(2)當時,的取值范圍為;當時,的取值范圍為.【解析】
(1)當時,分類討論把不等式化為等價不等式組,即可求解.(2)由絕對值的三角不等式,可得,當且僅當時,取“”,分類討論,即可求解.【詳解】(1)當時,,不等式可化為或或,解得不等式的解集為.(2)由絕對值的三角不等式,可得,當且僅當時,取“”,所以當時,的取值范圍為;當時,的取值范圍為.【點睛】本題主要考查了含絕對值的不等式的求解,以及絕對值三角不等
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 年度硬面堆、藥芯焊線戰(zhàn)略市場規(guī)劃報告
- 年度鐘表與計時儀器競爭策略分析報告
- 二零二五年度特種吊車租賃與運輸服務合同3篇
- 二零二五版高管勞動合同樣本:股權激勵與競業(yè)禁止條款3篇
- 二零二五年空調(diào)銷售與節(jié)能產(chǎn)品認證合同3篇
- 2025年度城市綠地養(yǎng)護及植物配置優(yōu)化合同4篇
- 2025年度私人診所與患者之間的遠程醫(yī)療服務合同
- 2024版簡易協(xié)議管理軟件解決方案一
- 二零二五年度新能源材料采購代理協(xié)議3篇
- 二零二四年太陽能光伏發(fā)電項目合同
- 2024年智能科技項目開發(fā)戰(zhàn)略合作框架協(xié)議
- 精神科健康宣教手冊-各種精神疾病宣教
- 人才交流中心聘用合同模板
- 騰訊云人工智能工程師認證考試題(附答案)
- 2024版新能源汽車充電樁建設與運營合作框架協(xié)議3篇
- 掛靠免責協(xié)議書范本
- 廣東省廣州市天河區(qū)2023-2024學年高一上學期期末考試數(shù)學試卷(解析版)
- 鋼構樓板合同范例
- 四年級全一冊《勞動與技術》第四單元 活動4《飼養(yǎng)動物的學問》課件
- 2024-2025學年人教版(2024)信息技術四年級上冊 第11課 嘀嘀嗒嗒的秘密 說課稿
- 2024中考物理真題匯編:電與磁(含解析)
評論
0/150
提交評論