上海市上海師范大學附中2025屆數(shù)學高三第一學期期末復習檢測試題含解析_第1頁
上海市上海師范大學附中2025屆數(shù)學高三第一學期期末復習檢測試題含解析_第2頁
上海市上海師范大學附中2025屆數(shù)學高三第一學期期末復習檢測試題含解析_第3頁
上海市上海師范大學附中2025屆數(shù)學高三第一學期期末復習檢測試題含解析_第4頁
上海市上海師范大學附中2025屆數(shù)學高三第一學期期末復習檢測試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

上海市上海師范大學附中2025屆數(shù)學高三第一學期期末復習檢測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知向量與向量平行,,且,則()A. B.C. D.2.已知集合,,則A. B. C. D.3.已知函數(shù),則的值等于()A.2018 B.1009 C.1010 D.20204.關于函數(shù),下列說法正確的是()A.函數(shù)的定義域為B.函數(shù)一個遞增區(qū)間為C.函數(shù)的圖像關于直線對稱D.將函數(shù)圖像向左平移個單位可得函數(shù)的圖像5.相傳黃帝時代,在制定樂律時,用“三分損益”的方法得到不同的竹管,吹出不同的音調.如圖的程序是與“三分損益”結合的計算過程,若輸入的的值為1,輸出的的值為()A. B. C. D.6.已知是第二象限的角,,則()A. B. C. D.7.已知a,b是兩條不同的直線,α,β是兩個不同的平面,且,,則“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件8.在中,“”是“為鈍角三角形”的()A.充分非必要條件 B.必要非充分條件 C.充要條件 D.既不充分也不必要條件9.若函數(shù)函數(shù)只有1個零點,則的取值范圍是()A. B. C. D.10.“”是“,”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分又不必要條件11.若某幾何體的三視圖(單位:cm)如圖所示,則此幾何體的體積是()A.36cm3 B.48cm3 C.60cm3 D.72cm312.復數(shù),若復數(shù)在復平面內對應的點關于虛軸對稱,則等于()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設函數(shù)滿足,且當時,又函數(shù),則函數(shù)在上的零點個數(shù)為___________.14.在中,,點是邊的中點,則__________,________.15.邊長為2的正方形經裁剪后留下如圖所示的實線圍成的部分,將所留部分折成一個正四棱錐.當該棱錐的體積取得最大值時,其底面棱長為________.16.將一顆質地均勻的正方體骰子(每個面上分別寫有數(shù)字1,2,3,4,5,6)先后拋擲2次,觀察向上的點數(shù),則點數(shù)之和是6的的概率是___.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)2019年6月,國內的運營牌照開始發(fā)放.從到,我們國家的移動通信業(yè)務用了不到20年的時間,完成了技術上的飛躍,躋身世界先進水平.為了解高校學生對的消費意愿,2019年8月,從某地在校大學生中隨機抽取了1000人進行調查,樣本中各類用戶分布情況如下:用戶分類預計升級到的時段人數(shù)早期體驗用戶2019年8月至2019年12月270人中期跟隨用戶2020年1月至2021年12月530人后期用戶2022年1月及以后200人我們將大學生升級時間的早晚與大學生愿意為套餐支付更多的費用作比較,可得出下圖的關系(例如早期體驗用戶中愿意為套餐多支付5元的人數(shù)占所有早期體驗用戶的).(1)從該地高校大學生中隨機抽取1人,估計該學生愿意在2021年或2021年之前升級到的概率;(2)從樣本的早期體驗用戶和中期跟隨用戶中各隨機抽取1人,以表示這2人中愿意為升級多支付10元或10元以上的人數(shù),求的分布列和數(shù)學期望;(3)2019年底,從這1000人的樣本中隨機抽取3人,這三位學生都已簽約套餐,能否認為樣本中早期體驗用戶的人數(shù)有變化?說明理由.18.(12分)已知等差數(shù)列{an}的前n項和為Sn,且(1)求數(shù)列{a(2)求數(shù)列{1Sn}的前19.(12分)的內角的對邊分別為,且.(1)求;(2)若,點為邊的中點,且,求的面積.20.(12分)已知函數(shù),其中為自然對數(shù)的底數(shù).(1)若函數(shù)在區(qū)間上是單調函數(shù),試求的取值范圍;(2)若函數(shù)在區(qū)間上恰有3個零點,且,求的取值范圍.21.(12分)已知函數(shù),.(1)求的值;(2)令在上最小值為,證明:.22.(10分)已知函數(shù).(1)若,證明:當時,;(2)若在只有一個零點,求的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

設,根據(jù)題意得出關于、的方程組,解出這兩個未知數(shù)的值,即可得出向量的坐標.【詳解】設,且,,由得,即,①,由,②,所以,解得,因此,.故選:B.【點睛】本題考查向量坐標的求解,涉及共線向量的坐標表示和向量數(shù)量積的坐標運算,考查計算能力,屬于中等題.2、C【解析】分析:根據(jù)集合可直接求解.詳解:,,故選C點睛:集合題也是每年高考的必考內容,一般以客觀題形式出現(xiàn),一般解決此類問題時要先將參與運算的集合化為最簡形式,如果是“離散型”集合可采用Venn圖法解決,若是“連續(xù)型”集合則可借助不等式進行運算.3、C【解析】

首先,根據(jù)二倍角公式和輔助角公式化簡函數(shù)解析式,根據(jù)所求函數(shù)的周期性,得到其周期為4,然后借助于三角函數(shù)的周期性確定其值即可.【詳解】解:.,,的周期為,,,,,..故選:C【點睛】本題重點考查了三角函數(shù)的圖象與性質、三角恒等變換等知識,掌握輔助角公式化簡函數(shù)解析式是解題的關鍵,屬于中檔題.4、B【解析】

化簡到,根據(jù)定義域排除,計算單調性知正確,得到答案.【詳解】,故函數(shù)的定義域為,故錯誤;當時,,函數(shù)單調遞增,故正確;當,關于的對稱的直線為不在定義域內,故錯誤.平移得到的函數(shù)定義域為,故不可能為,錯誤.故選:.【點睛】本題考查了三角恒等變換,三角函數(shù)單調性,定義域,對稱,三角函數(shù)平移,意在考查學生的綜合應用能力.5、B【解析】

根據(jù)循環(huán)語句,輸入,執(zhí)行循環(huán)語句即可計算出結果.【詳解】輸入,由題意執(zhí)行循環(huán)結構程序框圖,可得:第次循環(huán):,,不滿足判斷條件;第次循環(huán):,,不滿足判斷條件;第次循環(huán):,,滿足判斷條件;輸出結果.故選:【點睛】本題考查了循環(huán)語句的程序框圖,求輸出的結果,解答此類題目時結合循環(huán)的條件進行計算,需要注意跳出循環(huán)的判定語句,本題較為基礎.6、D【解析】

利用誘導公式和同角三角函數(shù)的基本關系求出,再利用二倍角的正弦公式代入求解即可.【詳解】因為,由誘導公式可得,,即,因為,所以,由二倍角的正弦公式可得,,所以.故選:D【點睛】本題考查誘導公式、同角三角函數(shù)的基本關系和二倍角的正弦公式;考查運算求解能力和知識的綜合運用能力;屬于中檔題.7、C【解析】

根據(jù)線面平行的性質定理和判定定理判斷與的關系即可得到答案.【詳解】若,根據(jù)線面平行的性質定理,可得;若,根據(jù)線面平行的判定定理,可得.故選:C.【點睛】本題主要考查了線面平行的性質定理和判定定理,屬于基礎題.8、C【解析】分析:從兩個方向去判斷,先看能推出三角形的形狀是銳角三角形,而非鈍角三角形,從而得到充分性不成立,再看當三角形是鈍角三角形時,也推不出成立,從而必要性也不滿足,從而選出正確的結果.詳解:由題意可得,在中,因為,所以,因為,所以,,結合三角形內角的條件,故A,B同為銳角,因為,所以,即,所以,因此,所以是銳角三角形,不是鈍角三角形,所以充分性不滿足,反之,若是鈍角三角形,也推不出“,故必要性不成立,所以為既不充分也不必要條件,故選D.點睛:該題考查的是有關充分必要條件的判斷問題,在解題的過程中,需要用到不等式的等價轉化,余弦的和角公式,誘導公式等,需要明確對應此類問題的解題步驟,以及三角形形狀對應的特征.9、C【解析】

轉化有1個零點為與的圖象有1個交點,求導研究臨界狀態(tài)相切時的斜率,數(shù)形結合即得解.【詳解】有1個零點等價于與的圖象有1個交點.記,則過原點作的切線,設切點為,則切線方程為,又切線過原點,即,將,代入解得.所以切線斜率為,所以或.故選:C【點睛】本題考查了導數(shù)在函數(shù)零點問題中的應用,考查了學生數(shù)形結合,轉化劃歸,數(shù)學運算的能力,屬于較難題.10、B【解析】

先求出滿足的值,然后根據(jù)充分必要條件的定義判斷.【詳解】由得,即,,因此“”是“,”的必要不充分條件.故選:B.【點睛】本題考查充分必要條件,掌握充分必要條件的定義是解題基礎.解題時可根據(jù)條件與結論中參數(shù)的取值范圍進行判斷.11、B【解析】試題分析:該幾何體上面是長方體,下面是四棱柱;長方體的體積,四棱柱的底面是梯形,體積為,因此總的體積.考點:三視圖和幾何體的體積.12、A【解析】

先通過復數(shù)在復平面內對應的點關于虛軸對稱,得到,再利用復數(shù)的除法求解.【詳解】因為復數(shù)在復平面內對應的點關于虛軸對稱,且復數(shù),所以所以故選:A【點睛】本題主要考查復數(shù)的基本運算和幾何意義,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】

判斷函數(shù)為偶函數(shù),周期為2,判斷為偶函數(shù),計算,,畫出函數(shù)圖像,根據(jù)圖像到答案.【詳解】知,函數(shù)為偶函數(shù),,函數(shù)關于對稱。,故函數(shù)為周期為2的周期函數(shù),且。為偶函數(shù),,,當時,,,函數(shù)先增后減。當時,,,函數(shù)先增后減。在同一坐標系下作出兩函數(shù)在上的圖像,發(fā)現(xiàn)在內圖像共有1個公共點,則函數(shù)在上的零點個數(shù)為1.故答案為:.【點睛】本題考查了函數(shù)零點問題,確定函數(shù)的奇偶性,對稱性,周期性,畫出函數(shù)圖像是解題的關鍵.14、2【解析】

根據(jù)正弦定理直接求出,利用三角形的邊表示向量,然后利用向量的數(shù)量積求解即可.【詳解】中,,,可得因為點是邊的中點,所以故答案為:;.【點睛】本題主要考查了三角形的解法,向量的數(shù)量積的應用,考查計算能力,屬于中檔題.15、【解析】

根據(jù)題意,建立棱錐體積的函數(shù),利用導數(shù)求函數(shù)的最大值即可.【詳解】設底面邊長為,則斜高為,即此四棱錐的高為,所以此四棱錐體積為,令,令,易知函數(shù)在時取得最大值.故此時底面棱長.故答案為:.【點睛】本題考查棱錐體積的求解,涉及利用導數(shù)研究體積最大值的問題,屬綜合中檔題.16、【解析】

先求出基本事件總數(shù)6×6=36,再由列舉法求出“點數(shù)之和等于6”包含的基本事件的個數(shù),由此能求出“點數(shù)之和等于6”的概率.【詳解】基本事件總數(shù)6×6=36,點數(shù)之和是6包括共5種情況,則所求概率是.故答案為【點睛】本題考查古典概率的求法,是基礎題,解題時要認真審題,注意列舉法的合理運用.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)詳見解析(3)事件雖然發(fā)生概率小,但是發(fā)生可能性為0.02,所以認為早期體驗用戶沒有發(fā)生變化,詳見解析【解析】

(1)由從高校大學生中隨機抽取1人,該學生在2021年或2021年之前升級到,結合古典摡型的概率計算公式,即可求解;(2)由題意的所有可能值為,利用相互獨立事件的概率計算公式,分別求得相應的概率,得到隨機變量的分布列,利用期望的公式,即可求解.(3)設事件為“從這1000人的樣本中隨機抽取3人,這三位學生都已簽約套餐”,得到七概率為,即可得到結論.【詳解】(1)由題意可知,從高校大學生中隨機抽取1人,該學生在2021年或2021年之前升級到的概率估計為樣本中早期體驗用戶和中期跟隨用戶的頻率,即.(2)由題意的所有可能值為,記事件為“從早期體驗用戶中隨機抽取1人,該學生愿意為升級多支付10元或10元以上”,事件為“從中期跟隨用戶中隨機抽取1人,該學生愿意為升級多支付10元或10元以上”,由題意可知,事件,相互獨立,且,,所以,,,所以的分布列為0120.180.490.33故的數(shù)學期望.(3)設事件為“從這1000人的樣本中隨機抽取3人,這三位學生都已簽約套餐”,那么.回答一:事件雖然發(fā)生概率小,但是發(fā)生可能性為0.02,所以認為早期體驗用戶沒有發(fā)生變化.回答二:事件發(fā)生概率小,所以可以認為早期體驗用戶人數(shù)增加.【點睛】本題主要考查了離散型隨機變量的分布列,數(shù)學期望的求解及應用,對于求離散型隨機變量概率分布列問題首先要清楚離散型隨機變量的可能取值,計算得出概率,列出離散型隨機變量概率分布列,最后按照數(shù)學期望公式計算出數(shù)學期望,其中列出離散型隨機變量概率分布列及計算數(shù)學期望是理科高考數(shù)學必考問題.18、(1)an=2n【解析】

(1)先設出數(shù)列的公差為d,結合題中條件,求出首項和公差,即可得出結果.(2)利用裂項相消法求出數(shù)列的和.【詳解】解:(1)設公差為d的等差數(shù)列{an}且a1+a則有:a1解得:a1=3,所以:a(2)由于:an所以:Sn則:1S則:Tn=1【點睛】本題考查的知識要點:數(shù)列的通項公式的求法及應用,裂項相消法在數(shù)列求和中的應用,主要考查學生的運算能力和轉化能力,屬于基礎題型.19、(1);(2).【解析】

(1)利用正弦定理邊化角,再利用余弦定理求解即可.(2)為為的中線,所以再平方后利用向量的數(shù)量積公式進行求解,再代入可解得,再代入面積公式求解即可.【詳解】(1)由,可得,由余弦定理可得,故.(2)因為為的中線,所以,兩邊同時平方可得,故.因為,所以.所以的面積.【點睛】本題主要考查了利用正余弦定理與面積公式求解三角形的問題,同時也考查了向量在解三角形中的運用,屬于中檔題.20、(1);(2).【解析】

(1)求出,再求恒成立,以及恒成立時,的取值范圍;(2)由已知,在區(qū)間內恰有一個零點,轉化為在區(qū)間內恰有兩個零點,由(1)的結論對分類討論,根據(jù)單調性,結合零點存在性定理,即可求出結論.【詳解】(1)由題意得,則,當函數(shù)在區(qū)間上單調遞增時,在區(qū)間上恒成立.∴(其中),解得.當函數(shù)在區(qū)間上單調遞減時,在區(qū)間上恒成立,∴(其中),解得.綜上所述,實數(shù)的取值范圍是.(2).由,知在區(qū)間內恰有一個零點,設該零點為,則在區(qū)間內不單調.∴在區(qū)間內存在零點,同理在區(qū)間內存在零點.∴在區(qū)間內恰有兩個零點.由(1)易知,當時,在區(qū)間上單調遞增,故在區(qū)間內至多有一個零點,不合題意.當時,在區(qū)間上單調遞減,故在區(qū)間內至多有一個零點,不合題意,∴.令,得,∴函數(shù)在區(qū)間上單凋遞減,在區(qū)間上單調遞增.記的兩個零點為,∴,必有.由,得.∴又∵,∴.綜上所述,實數(shù)的取值范圍為.【點睛】本題考查導數(shù)的綜合應用,涉及到函數(shù)的單調性、零點問題,意在考查直觀想象、邏輯推理、數(shù)學計算能力,屬于較難題.21、(1);(2)見解析.【解析】

(1)將轉化為對任意恒成立,令,故只需,即可求出的值;(2)由(1)知,可得,令,可證,使得,從而可確定在上單調遞減,在上單調遞增,進而可得,即,即可證出.【詳解】函數(shù)的定義域為,因為對任意恒成立,即對任意恒成立,令,則,當時,,故在上單調遞增,又,所以當時,,不符合題意;當時,令得,當時,;當時,,所以在上單調遞增,在上單調遞減,所

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論