2025屆四川省宜賓市興文縣高級(jí)中學(xué)數(shù)學(xué)高二上期末預(yù)測(cè)試題含解析_第1頁(yè)
2025屆四川省宜賓市興文縣高級(jí)中學(xué)數(shù)學(xué)高二上期末預(yù)測(cè)試題含解析_第2頁(yè)
2025屆四川省宜賓市興文縣高級(jí)中學(xué)數(shù)學(xué)高二上期末預(yù)測(cè)試題含解析_第3頁(yè)
2025屆四川省宜賓市興文縣高級(jí)中學(xué)數(shù)學(xué)高二上期末預(yù)測(cè)試題含解析_第4頁(yè)
2025屆四川省宜賓市興文縣高級(jí)中學(xué)數(shù)學(xué)高二上期末預(yù)測(cè)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩13頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2025屆四川省宜賓市興文縣高級(jí)中學(xué)數(shù)學(xué)高二上期末預(yù)測(cè)試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知平面法向量為,,則直線與平面的位置關(guān)系為A. B.C.與相交但不垂直 D.2.設(shè)等差數(shù)列,的前n項(xiàng)和分別是,,若,則()A. B.C. D.3.已知橢圓的上下頂點(diǎn)分別為,一束光線從橢圓左焦點(diǎn)射出,經(jīng)過反射后與橢圓交于點(diǎn),則直線的斜率為()A. B.C. D.4.已知三棱錐O-ABC,點(diǎn)M,N分別為AB,OC的中點(diǎn),且,用表示,則等于()A. B.C. D.5.橢圓與雙曲線有公共的焦點(diǎn)、,與在第一象限內(nèi)交于點(diǎn),是以線段為底邊的等腰三角形,若橢圓的離心率的范圍是,則雙曲線的離心率取值范圍是()A. B.C. D.6.下列四個(gè)命題中,為真命題的是()A.若a>b,則ac2>bc2B.若a>b,c>d,則a﹣c>b﹣dC.若a>|b|,則a2>b2D.若a>b,則7.在空間直角坐標(biāo)系中,點(diǎn)關(guān)于平面的對(duì)稱點(diǎn)為,則()A.-4 B.-10C.4 D.108.與向量平行,且經(jīng)過點(diǎn)的直線方程為()A. B.C. D.9.如圖,在平行六面體中,M為與的交點(diǎn),若,,,則下列向量中與相等的向量是()A. B.C. D.10.若直線與圓只有一個(gè)公共點(diǎn),則m的值為()A. B.C. D.11.已知橢圓的左右焦點(diǎn)分別為,直線與C相交于M,N兩點(diǎn)(其中M在第一象限),若M,,N,四點(diǎn)共圓,且直線傾斜角不小于,則橢圓C的離心率e的取值范圍是()A. B.C. D.12.已知,為雙曲線:的焦點(diǎn),為,(其中為雙曲線半焦距),與雙曲線的交點(diǎn),且有,則該雙曲線的離心率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.一條光線經(jīng)過點(diǎn)射到直線上,被反射后經(jīng)過點(diǎn),則入射光線所在直線的方程為___________.14.已知三棱錐中,平面BCD,,,,則三棱錐的外接球的表面積為_____.15.如圖,在平行六面體中,底面是邊長(zhǎng)為1的正方形,若,且,則的長(zhǎng)為_________16.已知三棱錐的四個(gè)頂點(diǎn)在球的球面上,,是邊長(zhǎng)為正三角形,分別是的中點(diǎn),,則球的體積為_________________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(Ⅰ)求的單調(diào)區(qū)間和最值;(Ⅱ)設(shè),證明:當(dāng)時(shí),18.(12分)已知等差數(shù)列中,,.(1)求的通項(xiàng)公式;(2)求的前項(xiàng)和的最大值.19.(12分)某校在全體同學(xué)中隨機(jī)抽取了100名同學(xué),進(jìn)行體育鍛煉時(shí)間的專項(xiàng)調(diào)查.將調(diào)查數(shù)據(jù)按平均每天鍛煉時(shí)間的多少(單位:分鐘)分成五組:,,,,,得到如圖所示的頻率分布直方圖.將平均每天體育鍛煉時(shí)間不少于60分鐘的同學(xué)定義為鍛煉達(dá)標(biāo),平均每天體育鍛煉時(shí)間少于60分鐘的同學(xué)定義為鍛煉不達(dá)標(biāo)(1)求a的值,并估計(jì)該校同學(xué)平均每天體育鍛煉時(shí)間的中位數(shù);(2)在樣本中,對(duì)平均每天體育鍛煉時(shí)間不達(dá)標(biāo)的同學(xué),按分層抽樣的方法抽取6名同學(xué)了解不達(dá)標(biāo)的原因,再?gòu)倪@6名同學(xué)中隨機(jī)抽取2名進(jìn)行調(diào)研,求這2名同學(xué)中至少有一名每天體育鍛煉時(shí)間(單位:分鐘)在內(nèi)的概率20.(12分)中國(guó)男子籃球職業(yè)聯(lián)賽(ChineseBasketballAssociation),簡(jiǎn)稱中職籃(CBA),由中國(guó)國(guó)家體育總局籃球運(yùn)動(dòng)管理中心舉辦的男子職業(yè)籃球賽事,旨在全面提高中國(guó)籃球運(yùn)動(dòng)水平,其中誕生了姚明、王治郅、易建聯(lián)、朱芳雨等球星.該比賽分為常規(guī)賽和季后賽.由于新冠疫情關(guān)系,某年聯(lián)賽采用賽會(huì)制:所有球隊(duì)集中在同一個(gè)地方比賽,分兩個(gè)階段進(jìn)行,每個(gè)階段采用循環(huán)賽,分主場(chǎng)比賽和客場(chǎng)比賽,積分排名前8球隊(duì)進(jìn)入季后賽.下表是A隊(duì)在常規(guī)賽60場(chǎng)比賽中的比賽結(jié)果記錄表.階段比賽場(chǎng)數(shù)主場(chǎng)場(chǎng)數(shù)獲勝場(chǎng)數(shù)主場(chǎng)獲勝場(chǎng)數(shù)第一階段30152010第二階段30152515(1)根據(jù)表中數(shù)據(jù),完成下面列聯(lián)表:A隊(duì)勝A隊(duì)負(fù)合計(jì)主場(chǎng)5客場(chǎng)20合計(jì)60(2)根據(jù)(1)中列聯(lián)表,判斷是否有90%的把握認(rèn)為比賽的“主客場(chǎng)”與“勝負(fù)”之間有關(guān)?附:.0.1000.0500.025k2.7063.8415.02421.(12分)已知過拋物線的焦點(diǎn)F且斜率為1的直線l交C于A,B兩點(diǎn),且(1)求拋物線C的方程;(2)求以C的準(zhǔn)線與x軸的交點(diǎn)D為圓心且與直線l相切的圓的方程22.(10分)在平面直角坐標(biāo)系中,有一條長(zhǎng)度為3的線段,端點(diǎn),分別在軸、軸上運(yùn)動(dòng),為線段上一點(diǎn),且.(1)求點(diǎn)的軌跡的方程;(2)已知不過原點(diǎn)的直線與相交于,兩點(diǎn),且線段始終被直線平分.求的面積取最大時(shí)直線的方程.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】.本題選擇A選項(xiàng).2、B【解析】利用求解.【詳解】解:因?yàn)榈炔顢?shù)列,的前n項(xiàng)和分別是,所以.故選:B3、B【解析】根據(jù)給定條件借助橢圓的光學(xué)性質(zhì)求出直線AD的方程,進(jìn)而求出點(diǎn)D的坐標(biāo)計(jì)算作答.【詳解】依題意,橢圓的上頂點(diǎn),下頂點(diǎn),左焦點(diǎn),右焦點(diǎn),由橢圓的光學(xué)性質(zhì)知,反射光線AD必過右焦點(diǎn),于是得直線AD的方程為:,由得點(diǎn),則有,所以直線的斜率為.故選:B4、D【解析】根據(jù)空間向量的加法、減法和數(shù)乘運(yùn)算可得結(jié)果.【詳解】.故選:D5、B【解析】求得,可得出,設(shè)橢圓和雙曲線的離心率分別為、,可得,由可求得的取值范圍.【詳解】設(shè),設(shè)雙曲線的實(shí)軸長(zhǎng)為,因?yàn)榕c在第一象限內(nèi)交于點(diǎn),是以線段為底邊的等腰三角形,則,由橢圓的定義可得,由雙曲線的定義可得,所以,,則,設(shè)橢圓和雙曲線的離心率分別為、,則,即,因,則,故.故選:B.6、C【解析】利用不等式的性質(zhì)結(jié)合特殊值法依次判斷即可【詳解】當(dāng)c=0時(shí),A不成立;2>1,3>-1,而2-3<1-(-1),故B不成立;a=2,b=1時(shí),,D不成立;由a>|b|知a>0,所以a2>b2,C正確故選:C7、A【解析】根據(jù)關(guān)于平面對(duì)稱的點(diǎn)的規(guī)律:橫坐標(biāo)、縱坐標(biāo)保持不變,豎坐標(biāo)變?yōu)樗南喾磾?shù),即可求出點(diǎn)關(guān)于平面的對(duì)稱點(diǎn)的坐標(biāo),再利用向量的坐標(biāo)運(yùn)算求.【詳解】解:由題意,關(guān)于平面對(duì)稱的點(diǎn)橫坐標(biāo)、縱坐標(biāo)保持不變,豎坐標(biāo)變?yōu)樗南喾磾?shù),從而有點(diǎn)關(guān)于對(duì)稱的點(diǎn)的坐標(biāo)為(2,?1,-3).故選:A【點(diǎn)睛】本題以空間直角坐標(biāo)系為載體,考查點(diǎn)關(guān)于面的對(duì)稱,考查數(shù)量積的坐標(biāo)運(yùn)算,屬于基礎(chǔ)題8、A【解析】利用點(diǎn)斜式求得直線方程.【詳解】依題意可知,所求直線的斜率為,所以所求直線方程為,即.故選:A9、A【解析】利用空間向量的三角形法則可得,結(jié)合平行六面體的性質(zhì)分析解答【詳解】平行六面體中,M為與的交點(diǎn),,,,則有:,所以.故選:A10、D【解析】利用圓心到直線的距離等于半徑列方程,化簡(jiǎn)求得的值.【詳解】圓的圓心為,半徑為,直線與圓只有一個(gè)公共點(diǎn),所以直線與圓相切,所以.故選:D11、B【解析】設(shè)橢圓的半焦距為c,由橢圓的中心對(duì)稱性和圓的性質(zhì)得以為直徑的圓與橢圓C有公共點(diǎn),則有以,再根據(jù)直線傾斜角不小于得,由橢圓的定義得,由此可求得橢圓離心率的范圍.【詳解】解:設(shè)橢圓的半焦距為c,由橢圓的中心對(duì)稱性和M,,N,四點(diǎn)共圓得,四邊形必為一個(gè)矩形,即以為直徑的圓與橢圓C有公共點(diǎn),所以,所以,所以,因?yàn)橹本€傾斜角不小于,所以直線傾斜角不小于,所以,化簡(jiǎn)得,,因?yàn)?,所以,所以,,又,因?yàn)?,所以,所以,所以,所?故選:B.12、B【解析】根據(jù)求得的關(guān)系,結(jié)合雙曲線的定義以及勾股定理,即可求得的等量關(guān)系,再求離心率即可.【詳解】根據(jù)題意,連接,作圖如下:顯然為直角三角形,又,又點(diǎn)在雙曲線上,故可得,解得,由勾股定理可得:,即,即,,故雙曲線的離心率為.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先求點(diǎn)關(guān)于直線的對(duì)稱點(diǎn),連接,則直線即為所求.【詳解】設(shè)點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)為,則,解得,所以,又點(diǎn),所以,直線的方程為:,由圖可知,直線即為入射光線,所以化簡(jiǎn)得入射光線所在直線的方程:.故答案為:.14、【解析】由題意可知三棱錐的外接球即為三棱柱的外接球,進(jìn)而求出三棱柱的外接球的半徑即可得出結(jié)果.【詳解】因?yàn)?,,所以,故,又因?yàn)槠矫鍮CD,因此三棱錐的外接球即為三棱柱的外接球,如圖:取的中點(diǎn),則為外接圓的圓心,取的中點(diǎn),則為外接圓的圓心,則的中點(diǎn)即為外接球的球心,因此,,因此,所以三棱錐的外接球的表面積為,故答案為:.15、【解析】因?yàn)?,所以,即,?6、【解析】由已知設(shè)出,,,分別在中和在中運(yùn)用余弦定理表示,得到關(guān)于x與y的關(guān)系式,再在中運(yùn)用勾股定理得到關(guān)于x與y的又一關(guān)系式,聯(lián)立可解得x,y,從而分析出正三棱錐是,,兩兩垂直的正三棱錐,所以三棱錐的外接球就是以為棱的正方體的外接球,再通過正方體的外接球的直徑等于正方體的體對(duì)角線的長(zhǎng)求出球的半徑,再求出球的體積.【詳解】在中,設(shè),,,,,因?yàn)辄c(diǎn),點(diǎn)分別是,的中點(diǎn),所以,,在中,,在中,,整理得,因?yàn)槭沁呴L(zhǎng)為的正三角形,所以,又因?yàn)?,所以,由,解得,所以又因?yàn)槭沁呴L(zhǎng)為的正三角形,所以,所以,所以,,兩兩垂直,則球?yàn)橐詾槔獾恼襟w的外接球,則外接球直徑為,所以球的體積為,故答案為.【點(diǎn)睛】本題主要考查空間幾何體的外接球的體積,破解關(guān)鍵在于熟悉正三棱錐的結(jié)構(gòu)特征,運(yùn)用解三角形的正弦定理和余弦定理得出三棱錐的棱的關(guān)系,繼而分析出正三棱錐的外接球是以正三棱錐中互相垂直的三條棱為棱的正方體的外接球,利用正方體的外接球的直徑等于正方體的體對(duì)角線的長(zhǎng)求解更方便快捷,屬于中檔題三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;最小值為,無最大值;(Ⅱ)證明見解析【解析】(Ⅰ)根據(jù)導(dǎo)函數(shù)的正負(fù)即可確定單調(diào)區(qū)間,由單調(diào)性可得最值點(diǎn);(Ⅱ)構(gòu)造函數(shù),利用導(dǎo)數(shù)可確定單調(diào)性,結(jié)合的正負(fù)可確定的零點(diǎn)的范圍,進(jìn)而得到結(jié)論.【詳解】(Ⅰ)由題意得:定義域?yàn)?,,?dāng)時(shí),;當(dāng)時(shí),;的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為的最小值為,無最大值(Ⅱ)設(shè),則,令得:當(dāng)時(shí),;當(dāng)時(shí),,在上單調(diào)遞增;在上單調(diào)遞減由(Ⅰ)知:,可得:,,可得:,即又,當(dāng)時(shí),,即當(dāng)時(shí),【點(diǎn)睛】思路點(diǎn)睛:本題考查導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用,涉及到函數(shù)單調(diào)性和最值的求解、利用導(dǎo)數(shù)證明不等式等知識(shí);利用導(dǎo)數(shù)證明不等式的關(guān)鍵是能夠通過移項(xiàng)構(gòu)造的方式,構(gòu)造出新的函數(shù),通過的單調(diào)性,結(jié)合零點(diǎn)所處的范圍可分析得到結(jié)果.18、(1);(2)30.【解析】(1)設(shè)出等差數(shù)列的公差,由已知列式求得公差,進(jìn)一步求出首項(xiàng),代入等差數(shù)列的通項(xiàng)公式求數(shù)列的通項(xiàng)公式;(2)利用等差數(shù)列求和公式求和,再利用二次函數(shù)求得最值即可.【詳解】解:(1)由題意得,數(shù)列公差為,則解得:,∴(2)由(1)可得,∴∵,∴當(dāng)或時(shí),取得最大值【點(diǎn)睛】本題考查利用基本量求解等差數(shù)列的通項(xiàng)公式,以及前n項(xiàng)和及最值,屬基礎(chǔ)題19、(1),中位數(shù)為64;(2).【解析】(1)由頻率和為1求參數(shù)a,根據(jù)中位數(shù)的性質(zhì),結(jié)合頻率直方圖求中位數(shù).(2)首先由分層抽樣求6名同學(xué)的分布情況,再應(yīng)用列舉法求概率.【詳解】(1)由題設(shè),,可得,∴中位數(shù)應(yīng)在之間,令中位數(shù)為,則,解得.∴該校同學(xué)平均每天體育鍛煉時(shí)間的中位數(shù)為64.(2)由題設(shè),抽取6名同學(xué)中1名在,2名在,3名在,若1名在為,2名在為,3名在為,∴隨機(jī)抽取2名的可能情況有共15種,其中至少有一名在內(nèi)的共12種,∴這2名同學(xué)中至少有一名每天體育鍛煉時(shí)間(單位:分鐘)在內(nèi)的概率為.20、(1)填表見解析(2)沒有【解析】(1)由A隊(duì)在常規(guī)賽60場(chǎng)比賽中的比賽結(jié)果記錄表可得答案;(2)根據(jù)(1)中的列聯(lián)表,代入可得答案.【小問1詳解】(1)根據(jù)表格信息得到列聯(lián)表:A隊(duì)勝A隊(duì)負(fù)合計(jì)主場(chǎng)25530客場(chǎng)201030合計(jì)451560【小問2詳解】所以沒有90%的把握認(rèn)為比賽的“主客場(chǎng)”與“勝負(fù)”之間有關(guān).21、(1);(2)【解析】(1)首先表示出直線l的方程,再聯(lián)立直線與拋物線方程,消去,列出韋達(dá)定理,再根據(jù)焦點(diǎn)弦公式計(jì)算可得;(2)由(1)可得,再利用點(diǎn)到直線的距離求出半徑,即可求出圓的方程;【詳解】解析:(1)由已知得點(diǎn),∴直線l的方程為,聯(lián)立去,消去整理得設(shè),,則,,∴拋物線C的方程為(2)由(1)可得,直線l的方程為,∴圓D的半徑,∴圓D的方程為【點(diǎn)睛】本題考查拋物線的簡(jiǎn)單幾何性質(zhì),屬于中檔題.22、(1)(2)【解析】(1)設(shè),根據(jù)題意可得,,利用兩點(diǎn)之間的距離公式表示出,化簡(jiǎn)即可得出結(jié)果;(2)設(shè)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論