版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共7頁廣西南寧市馬山縣2025屆數(shù)學(xué)九上開學(xué)檢測試題題號一二三四五總分得分批閱人A卷(100分)一、選擇題(本大題共8個小題,每小題4分,共32分,每小題均有四個選項,其中只有一項符合題目要求)1、(4分)如圖,直線與x軸、y軸交于A、B兩點,∠BAO的平分線所在的直線AM的解析式是()A. B. C. D.2、(4分)在RtABC中,∠C90,AB3,AC2,則BC的值()A. B. C. D.3、(4分)生活處處有數(shù)學(xué):在五一出游時,小明在沙灘上撿到一個美麗的海螺,經(jīng)仔細(xì)觀察海螺的花紋后畫出如圖所示的蝶旋線,該螺旋線由一系列直角三角形組成,請推斷第n個三角形的面積為()A. B. C. D.4、(4分)下列命題是真命題的是()A.相等的角是對頂角B.兩直線被第三條直線所截,內(nèi)錯角相等C.若,則D.有一角對應(yīng)相等的兩個菱形相似5、(4分)下列各組長度的線段能組成直角三角形的是().A.a(chǎn)=2,b=3,c=4 B.a(chǎn)=4,b=4,c=5C.a(chǎn)=5,b=6,c=7 D.a(chǎn)=5,b=12,c=136、(4分)在平面直角坐標(biāo)系中,點(–1,–2)在第()象限.A.一B.二C.三D.四7、(4分)如圖,在長方形中,繞點旋轉(zhuǎn),得到,使,,三點在同一條直線上,連接,則是()A.等腰三角形 B.直角三角形 C.等邊三角形 D.等腰直角三角形8、(4分)如圖,矩形ABCD中,AB=7,BC=4,按以下步驟作圖:以點B為圓心,適當(dāng)長為半徑畫弧,交AB,BC于點E,F;再分別以點E,F為圓心,大于EF的長為半徑畫弧,兩弧在∠ABC內(nèi)部相交于點H,作射線BH,交DC于點G,則DG的長為()A.1 B.1 C.3 D.2二、填空題(本大題共5個小題,每小題4分,共20分)9、(4分)一只不透明的袋子中裝有4個小球,分別標(biāo)有數(shù)字2,3,4,,這些球除數(shù)字外都相同.甲、乙兩人每次同時從袋中各隨機摸出1個球,并計算摸出的這2個小球上數(shù)字之和.記錄后都將小球放回袋中攪勻,進行重復(fù)實驗.實驗數(shù)據(jù)如下表:摸球總次數(shù)1020306090120180240330450“和為7”出現(xiàn)的頻數(shù)19142426375882109150“和為7”出現(xiàn)的頻率0.100.450.470.400.290.310.320.340.330.33試估計出現(xiàn)“和為7”的概率為________.10、(4分)若直角三角形兩邊的長分別為a、b且滿足+|b-4|=0,則第三邊的長是
_________.11、(4分)已知x=+5,則代數(shù)式(x﹣3)2﹣4(x﹣3)+4的值是_____.12、(4分)如果a2-ka+81是完全平方式,則k=________.13、(4分)矩形的對角線與相交于點,,,分別是,的中點,則的長度為________.三、解答題(本大題共5個小題,共48分)14、(12分)觀察下列各式子,并回答下面問題.第一個:第二個:第三個:第四個:…(1)試寫出第個式子(用含的表達式表示),這個式子一定是二次根式嗎?為什么?(2)你估計第16個式子的值在哪兩個相鄰整數(shù)之間?試說明理由.15、(8分)如圖,在中,,點M、N分別在BC所在的直線上,且BM=CN,求證:△AMN是等腰三角形.16、(8分)如圖①,△ABC與△CDE是等腰直角三角形,直角邊AC、CD在同一條直線上,點M,N分別是斜邊AB,DE的中點,點P為AD的中點,連接AE、BD、MN.(1)求證:△PMN為等腰直角三角形;(2)現(xiàn)將圖①中的△CDE繞著點C順時針旋轉(zhuǎn)α(0°<α<90°),得到圖②,AE與MP,BD分別交于點G、H,請判斷①中的結(jié)論是否成立,若成立,請證明;若不成立,請說明理由.17、(10分)解不等式組:,并把解集表示在數(shù)軸上;18、(10分)在數(shù)學(xué)拓展課上,老師讓同學(xué)們探討特殊四邊形的做法:如圖,先作線段,作射線(為銳角),過作射線平行于,再作和的平分線分別交和于點和,連接,則四邊形為菱形;(1)你認(rèn)為該作法正確嗎?請說明理由.(2)若,并且四邊形的面積為,在上取一點,使得.請問圖中存在這樣的點嗎?若存在,則求出的長;若不存在,請說明理由.B卷(50分)一、填空題(本大題共5個小題,每小題4分,共20分)19、(4分)已知,那么________.20、(4分)某一次函數(shù)的圖象經(jīng)過點(3,),且函數(shù)y隨x的增大而增大,請你寫出一個符合條件的函數(shù)解析式______________________21、(4分)如圖,在平面直角坐標(biāo)系中,平行四邊形OABC的邊OC落在x軸的正半軸上,且點B(6,2),C(4,0),直線y=2x+1以每秒1個單位長度的速度沿y軸向下平移,經(jīng)過______秒該直線可將平行四邊形OABC分成面積相等的兩部分.22、(4分)菱形ABCD的周長為24,∠ABC=60°,以AB為腰在菱形外作底角為45°的等腰△ABE,連結(jié)AC,CE,則△ACE的面積為___________.23、(4分)如果a-b=2,ab=3,那么a2b-ab2=_________;二、解答題(本大題共3個小題,共30分)24、(8分)如圖,矩形中,對角線的垂直平分線與相交于點,與相交于點,連接,.求證:四邊形是菱形.25、(10分)如圖1,將邊長為1的正方形ABCD壓扁為邊長為1的菱形ABCD.在菱形ABCD中,∠A的大小為α,面積記為S.(1)請補全下表:30°45°60°90°120°135°150°S1(2)填空:由(1)可以發(fā)現(xiàn)正方形在壓扁的過程中,菱形的面積隨著∠A大小的變化而變化,不妨把菱形的面積S記為S(α).例如:當(dāng)α=30°時,;當(dāng)α=135°時,.由上表可以得到(______°);(______°),…,由此可以歸納出.(3)兩塊相同的等腰直角三角板按如圖的方式放置,AD=,∠AOB=α,試探究圖中兩個帶陰影的三角形面積是否相等,并說明理由(注:可以利用(2)中的結(jié)論).26、(12分)如圖,在四邊形紙片ABCD中,∠B=∠D=90°,點E,F(xiàn)分別在邊BC,CD上,將AB,AD分別沿AE,AF折疊,點B,D恰好都和點G重合,∠EAF=45°.(1)求證:四邊形ABCD是正方形;(2)求證:三角形ECF的周長是四邊形ABCD周長的一半;(3)若EC=FC=1,求AB的長度.
參考答案與詳細(xì)解析一、選擇題(本大題共8個小題,每小題4分,共32分,每小題均有四個選項,其中只有一項符合題目要求)1、B【解析】
對于已知直線,分別令x與y為0求出對應(yīng)y與x的值,確定出A與B的坐標(biāo),在x軸上取一點B′,使AB=AB′,連接MB′,由AM為∠BAO的平分線,得到∠BAM=∠B′AM,利用SAS得出兩三角形全等,利用全等三角形的對應(yīng)邊相等得到BM=B′M,設(shè)BM=B′M=x,可得出OM=8-x,在Rt△B′OM中,利用勾股定理列出關(guān)于x的方程,求出方程的解得到x的值,確定出M坐標(biāo),設(shè)直線AM解析式為y=kx+b,將A與M坐標(biāo)代入求出k與b的值,即可確定出直線AM解析式.【詳解】對于直線,令x=0,求出y=8;令y=0求出x=6,∴A(6,0),B(0,8),即OA=6,OB=8,根據(jù)勾股定理得:AB=10,在x軸上取一點B′,使AB=AB′,連接MB′,∵AM為∠BAO的平分線,∴∠BAM=∠B′AM,∵在△ABM和△AB′M中,,∴△ABM≌△AB′M(SAS),∴BM=B′M,設(shè)BM=B′M=x,則OM=OB﹣BM=8﹣x,在Rt△B′OM中,B′O=AB′﹣OA=10﹣6=4,根據(jù)勾股定理得:x2=42+(8﹣x)2,解得:x=5,∴OM=1,即M(0,1),設(shè)直線AM解析式為y=kx+b,將A與M坐標(biāo)代入得:,解得:,則直線AM解析式為y=﹣x+1.故選B.此題考查了一次函數(shù)綜合題,涉及的知識有:待定系數(shù)法求一次函數(shù)解析式,一次函數(shù)與坐標(biāo)軸的交點,勾股定理,全等三角形的判定與性質(zhì),以及坐標(biāo)與圖形性質(zhì),熟練掌握待定系數(shù)法是解本題的關(guān)鍵.2、A【解析】
根據(jù)勾股定理即可求出.【詳解】由勾股定理得,.故選.本題考查的是勾股定理,掌握勾股定理是解題的關(guān)鍵.3、D【解析】
根據(jù)勾股定理分別求出、,根據(jù)三角形的面積公式分別求出第一個、第二個、第三個三角形的面積,總結(jié)規(guī)律,根據(jù)規(guī)律解答即可.【詳解】解:第1個三角形的面積,由勾股定理得,,則第2個三角形的面積,,則第3個三角形的面積,則第個三角形的面積,故選:.本題考查的是勾股定理,如果直角三角形的兩條直角邊長分別是,,斜邊長為,那么.4、D【解析】
A錯誤,對頂角相等,但相等的角不一定是對頂角.B錯誤,兩直線平行時,內(nèi)錯角相等.C錯誤,當(dāng)m和n互為相反數(shù)時,,但m≠n.故選D5、D【解析】本題只有,故選D6、C【解析】分析:根據(jù)在平面直角坐標(biāo)系中點的符號特征求解即可.詳解:∵-1<0,-2<0,∴點(–1,–2)在第三象限.故選C.點睛:本題考查了平面直角坐標(biāo)系中點的坐標(biāo)特征.第一象限內(nèi)點的坐標(biāo)特征為(+,+),第二象限內(nèi)點的坐標(biāo)特征為(-,+),第三象限內(nèi)點的坐標(biāo)特征為(-,-),第四象限內(nèi)點的坐標(biāo)特征為(+,-),x軸上的點縱坐標(biāo)為0,y軸上的點橫坐標(biāo)為0.7、D【解析】
證明∠GAE=90°,∠EAB=90°,根據(jù)旋轉(zhuǎn)的性質(zhì)證得AF=AC,∠FAE=∠CAB,得到∠FAC=∠EAB=90°,即可解決問題.【詳解】解:∵四邊形AGFE為矩形,
∴∠GAE=90°,∠EAB=90°;
由題意,△AEF繞點A旋轉(zhuǎn)得到△ABC,
∴AF=AC;∠FAE=∠CAB,
∴∠FAC=∠EAB=90°,
∴△ACF是等腰直角三角形.
故選:D.本題主要考查了旋轉(zhuǎn)的性質(zhì)和等腰三角形的定義,解題的關(guān)鍵是靈活運用旋轉(zhuǎn)的性質(zhì)來分析、判斷、解答.8、C【解析】
利用基本作圖得到BG平分∠ABC,再證明△BCG為等腰直角三角形得到GC=CB=4,從而計算CD-CG即可得到DG的長.【詳解】由圖得BG平分∠ABC,
∵四邊形ABCD為矩形,CD=AB=7,
∴∠ABC=∠B=,
∴∠CBG=,
∴△BCG為等腰直角三角形,
∴GC=CB=4,
∴DG=CD?CG=7?4=3.
故選:C.本題考查等腰直角三角形的性質(zhì),解題的關(guān)鍵是得到GC=CB=4.二、填空題(本大題共5個小題,每小題4分,共20分)9、0.33【解析】
由于大量試驗中“和為7”出現(xiàn)的頻數(shù)穩(wěn)定在0.3附近,據(jù)圖表,可估計“和為7”出現(xiàn)的概率為3.1,3.2,3.3等均可.【詳解】出現(xiàn)和為7的概率是:0.33(或0.31,0.32,0.34均正確);故答案為:0.33此題考查利用頻率估計概率,解題關(guān)鍵在于看懂圖中數(shù)據(jù)10、2或【解析】
首先利用絕對值以及算術(shù)平方根的性質(zhì)得出a,b的值,再利用分類討論結(jié)合勾股定理求出第三邊長.【詳解】解:∵+|b-4|=0,∴b=4,a=1.當(dāng)b=4,a=1時,第三邊應(yīng)為斜邊,∴第三邊為;當(dāng)b=4,a=1時,則第三邊可能是直角邊,其長為=2.故答案為:2或.本題考查了利用勾股定理解直角三角形的能力,當(dāng)已知條件中沒有明確哪是斜邊時,要注意討論,一些學(xué)生往往忽略這一點,造成丟解.11、1【解析】
將代入原式=(x-3-2)2=(x-1)2計算可得.【詳解】當(dāng)時,原式,故答案為1.本題主要考查二次根式的化簡求值,解題的關(guān)鍵是熟練掌握二次根式的混合運算順序和運算法則及完全平方公式.12、±18.【解析】
利用完全平方公式的結(jié)構(gòu)特征判斷即可確定出k的值.【詳解】∵二次三項式a2-ka+81是完全平方式,∴k=±18,故答案為:±18.此題考查完全平方式,解題關(guān)鍵在于掌握運算法則13、1【解析】
分析題意,知道,分別是,的點,則可知是△AOD的中位線;結(jié)合中位線的性質(zhì)可知=OA,故只要求出OA的長即可;已知矩形的一條對角線長,則可得出AC的長,進而得出OA的長,便可得解.【詳解】∵四邊形ABCD是矩形,∴BD=AC=4,∴OA=2.∵,是DO、AD的中點,∴是△AOD的中位線,∴=OA=1.故答案為:1此題考查中位線的性質(zhì),矩形的性質(zhì),解題關(guān)鍵在于利用中位線性質(zhì)求解三、解答題(本大題共5個小題,共48分)14、(1),該式子一定是二次根式,理由見解析;(2)在15和16之間.理由見解析.【解析】
(1)依據(jù)規(guī)律可寫出第n個式子,然后判斷被開方數(shù)的正負(fù)情況,從而可做出判斷;(2)將代入,得出第16個式子為,再判斷即可.【詳解】解:(1),該式子一定是二次根式,因為為正整數(shù),,所以該式子一定是二次根式(2)∵,,∴.∴在15和16之間.本題考查的知識點是二次根式的定義以及估計無理數(shù)的大小,掌握用“逼近法”估算無理數(shù)的大小的方法是解此題的關(guān)鍵.15、詳見解析【解析】
根據(jù)已知條件易證△ABM≌△ACN,由全等三角形的性質(zhì)可得AM=AN,即可證得△AMN是等腰三角形.【詳解】證明:∵AB=AC,∴∠ABC=∠ACB,∴∠ABM=∠ACN,在△ABM和△ACN中,∴△ABM≌△ACN,∴AM=AN,即△AMN是等腰三角形.本題考查了全等三角形的判定與性質(zhì)及等腰三角形的判定,利用全等三角形的的判定證得△ABM≌△CAN是解決問題的關(guān)鍵.16、(1)證明見解析;(2)成立,理由見解析.【解析】
(1)由等腰直角三角形的性質(zhì)易證△ACE≌△BCD,由此可得AE=BD,再根據(jù)三角形中位線定理即可得到PM=PN,由平行線的性質(zhì)可得PM⊥PN,于是得到結(jié)論;(2)(1)中的結(jié)論仍舊成立,由(1)中的證明思路即可證明.【詳解】(1)∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°.在△ACE和△BCD中,,∴△ACE≌△BCD(SAS),∴AE=BD,∠EAC=∠CBD,∵∠CBD+∠BDC=90°,∴∠EAC+∠BDC=90°,∵點M、N分別是斜邊AB、DE的中點,點P為AD的中點,∴PM=BD,PN=AE,∴PM=PN,∵PM∥BD,PN∥AE,∴∠NPD=∠EAC,∠MPA=∠BDC,∵∠EAC+∠BDC=90°,∴∠MPA+∠NPC=90°,∴∠MPN=90°,即PM⊥PN,∴△PMN為等腰直角三角形;(2)①中的結(jié)論成立,理由:設(shè)AE與BC交于點O,如圖②所示:∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°.∴∠ACE=∠BCD,在△ACE和△BCD中,,∴△ACE≌△BCD(SAS),∴AE=BD,∠CAE=∠CBD.∵∠AOC=∠BOE,∠CAE=∠CBD,∴∠BHO=∠ACO=90°,∴AE⊥BD,∵點P、M、N分別為AD、AB、DE的中點,∴PM=BD,PM∥BD,PN=AE,PN∥AE,∴PM=PN.∵AE⊥BD,∴PM⊥PN,∴△PMN為等腰直角三角形.本題主要考查了等腰直角三角形的判定與性質(zhì)、全等三角形的判定與性質(zhì)以及三角形中位線定理等知識;熟練掌握等腰直角三角形的性質(zhì),證明三角形全等是解答此題的關(guān)鍵.17、【解析】
分別求出各不等式的解集,再求出其公共解集并在數(shù)軸上表示出來即可.【詳解】∵解不等式得:,解不等式得:,∴不等式組的解集是,
在數(shù)軸上表示不等式組的解集為:本題考查了解一元一次不等式組以及在數(shù)軸上表示不等式組的解集的應(yīng)用,求不等式的公共解,要遵循以下原則:同大取較大,同小取較小,小大大小中間找,大大小小解不了.18、(1)作法正確(2)或【解析】
(1)根據(jù)作法可以推出,又因為,所以四邊形是平行四邊形,又,所以四邊形是菱形,因此作法正確;(2)作,由面積公式可求出,由菱形的性質(zhì)可得AD=AB=4,用勾股定理可得,由銳角三角函數(shù)得,所以是正三角形.再根據(jù)菱形對角線互相垂直的性質(zhì),利用勾股定理解得或.【詳解】(1)作法正確.理由如下:∵∴∵平分,平分∴∴∴又∵∴四邊形是平行四邊形∵∴四邊形是菱形.故作法正確.(2)存在.如圖,作∵,∴且∴由勾股定理得∴由銳角三角函數(shù)得∴是正三角形∴∵∴∴或本題考查了菱形的性質(zhì)和判定,勾股定理和銳角三角函數(shù),是一個四邊形的綜合題.一、填空題(本大題共5個小題,每小題4分,共20分)19、【解析】
直接利用已知得出,進而代入求出答案.【詳解】解:∵,∴,∴.故答案為:.此題主要考查了代數(shù)式的化簡,正確用b代替a是解題關(guān)鍵.20、y=x-4【解析】
首先設(shè)一次函數(shù)解析式為y=kx+b,根據(jù)y隨x的增大而增大可選取k=1(k取任意一個正數(shù)即可),再把點(3,﹣1)代入可得﹣1=3+b,計算出b的值,進而可得解析式.【詳解】∵函數(shù)的值隨自變量的增大而增大,∴該一次函數(shù)的解析式為y=kx+b(k>0),∴可選取k=1,再把點(3,﹣1)代入:﹣1=3+b,解得:b=-4,∴一次函數(shù)解析式為y=x-4,故答案為:y=x-4(答案不唯一).本題考查一次函數(shù)的性質(zhì),掌握一次函數(shù)圖象與系數(shù)的關(guān)系是解題的關(guān)鍵.21、1【解析】
首先連接AC、BO,交于點D,當(dāng)y=2x+1經(jīng)過D點時,該直線可將?OABC的面積平分,然后計算出過D且平行直線y=2x+1的直線解析式y(tǒng)=2x-5,從而可得直線y=2x+1要向下平移1個單位,進而可得答案.【詳解】連接AC、BO,交于點D,當(dāng)y=2x+1經(jīng)過D點時,該直線可將□OABC的面積平分;∵四邊形AOCB是平行四邊形,∴BD=OD,∵B(1,2),點C(4,0),∴D(3,1),設(shè)DE的解析式為y=kx+b,∵平行于y=2x+1,∴k=2,∵過D(3,1),∴DE的解析式為y=2x-5,∴直線y=2x+1要向下平移1個單位,∴時間為1秒,故答案為1.此題主要考查了平行四邊形的性質(zhì),以及一次函數(shù),掌握經(jīng)過平行四邊形對角線交點的直線平分平行四邊形的面積是解題的關(guān)鍵.22、9或.【解析】
分兩種情況畫圖,利用等腰直角三角形的性質(zhì)和勾股定理矩形計算即可.【詳解】解:①如圖1,延長EA交DC于點F,∵菱形ABCD的周長為24,
∴AB=BC=6,
∵∠ABC=60°,
∴三角形ABC是等邊三角形,
∴∠BAC=60°,
當(dāng)EA⊥BA時,△ABE是等腰直角三角形,
∴AE=AB=AC=6,∠EAC=90°+60°=150°,
∴∠FAC=30°,
∵∠ACD=60°,
∴∠AFC=90°,
∴CF=AC=3,
則△ACE的面積為:AE×CF=×6×3=9;
②如圖2,過點A作AF⊥EC于點F,
由①可知:∠EBC=∠EBA+∠ABC=90°+60°=150°,
∵AB=BE=BC=6,
∴∠BEC=∠BCE=15°,
∴∠AEF=45°-15°=30°,∠ACE=60°-15°=45°,
∴AF=AE,AF=CF=AC=,
∵AB=BE=6,
∴AE=,
∴EF=,
∴EC=EF+FC=
則△ACE的面積為:EC×AF=.
故答案為:9或.本題考查了菱形的性質(zhì)、等腰三角形的性質(zhì)、等邊三角形的判定與性質(zhì),解決本題的關(guān)鍵是掌握菱形的性質(zhì).23、6【解析】
首先將a2b-ab2提取公因式,在代入計算即可.【詳解】解:代入a-b=2,ab=3則原式=故答案為6.本題主要考查因式分解的計算,關(guān)鍵在于提取公因式,這是基本知識點,應(yīng)當(dāng)熟練掌握.二、解答題(本大題共3個小題,共30分)24、見解析【解析】
先證明四邊形AMCN為平行四邊形,再根據(jù)對角線互相垂直的平行四邊形是菱形即可證得結(jié)論.【詳解】是矩形,則,,而是的垂直平分線,則,,而,,,四邊形為平行四邊形,又,四邊形是菱形.本題考查了矩形的性質(zhì),平行四邊形的判定,菱形的判定等,正確把握相關(guān)的性質(zhì)定理與判定定理是解題的關(guān)鍵.25、(1);;;;(2)120;30;α;(3)兩個帶陰影的三角形面積相等,證明見解析.【解析】分析:(1)過D作DE⊥AB于點E,當(dāng)α=45°時,可求得DE,從而可求得菱形的面積S,同理可求當(dāng)α=60°時S的值,當(dāng)α=120°時,過D作DF⊥AB交BA的延長線于點F,則可求得DF,可求得S的值,同理當(dāng)α=135°時S的值;(2)根據(jù)表中所計算出的S的值,可得出答案;(3)將△ABO沿AB翻折得到菱形AEBO,將△CDO沿CD翻折得到菱形OCFD.利用(2)中的結(jié)論,可求得△AOB和△COD的面積,從而可求得結(jié)論.詳解:(1)當(dāng)α=45°時,如圖1,過D作DE⊥AB于點E,則DE=AD=,∴S=AB?DE=,同理當(dāng)α=60°時S=,當(dāng)α=120°時,如圖
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 運動健身的訓(xùn)練安排計劃
- 家政行業(yè)話務(wù)員工作總結(jié)
- 中班主題有趣的石頭
- 幼兒園大班上學(xué)期科學(xué)教案有關(guān)《磁力組合》課件
- 美容院前臺工作感受
- 生活美學(xué)創(chuàng)意課程設(shè)計
- 現(xiàn)代理論課程設(shè)計
- 2024年新型建筑工程原材料采購標(biāo)準(zhǔn)協(xié)議模板版
- 我的紙片人爸爸讀后感
- 捐贈活動領(lǐng)導(dǎo)講話稿
- 里氏硬度計算表
- mt煤礦用氮氣防滅火技術(shù)
- 招聘教研員面試試題
- ASTM-B117-16-鹽霧實驗儀的標(biāo)準(zhǔn)操作規(guī)程(中文版)
- 鋼結(jié)構(gòu)設(shè)計手冊
- 論WTO法律規(guī)則下的新貿(mào)易壁壘
- 軍衛(wèi)一號數(shù)據(jù)結(jié)構(gòu)手冊
- PICC+CVC+輸液港使用與維護
- 梨山老母玄妙真經(jīng)
- 壓力容器安全技術(shù)規(guī)程
- 藥品上量實用
評論
0/150
提交評論