版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
學校________________班級____________姓名____________考場____________準考證號學校________________班級____________姓名____________考場____________準考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共4頁河北省衡水安平縣聯(lián)考2024-2025學年九年級數(shù)學第一學期開學教學質(zhì)量檢測試題題號一二三四五總分得分A卷(100分)一、選擇題(本大題共8個小題,每小題4分,共32分,每小題均有四個選項,其中只有一項符合題目要求)1、(4分)如圖,在菱形ABCD中,∠BAD=60°,AB=2,E是DC邊上一個動點,F(xiàn)是AB邊上一點,∠AEF=30°.設(shè)DE=x,圖中某條線段長為y,y與x滿足的函數(shù)關(guān)系的圖象大致如圖所示,則這條線段可能是圖中的().A.線段EC B.線段AE C.線段EF D.線段BF2、(4分)如圖,△ABC的周長為17,點D,E在邊BC上,∠ABC的平分線垂直于AE,垂足為點N,∠ACB的平分線垂直于AD,垂足為點M,若BC6,則MN的長度為()A. B.2 C. D.33、(4分)下而給出四邊形ABCD中的度數(shù)之比,其中能判定四邊形ABCD為平行四邊形的是().A.1:2:3:4 B.1:2:2:3 C.2:2:3:3 D.2:3:2:34、(4分)若甲、乙兩人同時從某地出發(fā),沿著同一個方向行走到同一個目的地,其中甲一半的路程以a(km/h)的速度行走,另一半的路程以b(km/h)的速度行走;乙一半的時間以a(km/h)的速度行走,另一半的時間以b(km/h)的速度行走(a≠b),則先到達目的地的是()A.甲 B.乙C.同時到達 D.無法確定5、(4分)要使分式有意義,則x的取值應(yīng)滿足()A.x≠2 B.x≠1 C.x=2 D.x=﹣16、(4分)平行四邊形、矩形、菱形、正方形都具有的是()A.對角線互相平分B.對角線互相垂直C.對角線相等D.對角線互相垂直且相等7、(4分)將一次函數(shù)的圖象向上平移2個單位,平移后,若,則x的取值范圍是()A. B. C. D.8、(4分)如圖,在已知的△ABC中,按以下步驟作圖:①分別以A,B為圓心,以大于AB的長為半徑作弧,兩弧相交于兩點EF;②作直線EF交BC于點D連接AD.若AD=AC,∠C=40°,則∠BAC的度數(shù)是()A.105° B.110° C.I15° D.120°二、填空題(本大題共5個小題,每小題4分,共20分)9、(4分)不等式9﹣3x>0的非負整數(shù)解的和是_____.10、(4分)如圖,P是矩形ABCD的邊AD上一個動點,矩形的兩條邊AB、BC的長分別為6和8,那么點P到矩形的兩條對角線AC和BD的距離之和是__.11、(4分)已知m是關(guān)于x的方程的一個根,則=______.12、(4分)如圖,矩形中,,,是邊上一點,連接,將沿翻折,點的對應(yīng)點是,連接,當是直角三角形時,則的值是________13、(4分)如圖,在菱形ABCD中,AC=6cm,BD=8cm,則菱形ABCD的高AE為cm.三、解答題(本大題共5個小題,共48分)14、(12分)先化簡,再求值:÷(1+),其中x=1.15、(8分)如圖,在R△ABC中,∠ACB=90°,CD為AB邊上的高,CE為AB邊上的中線,AD=4,CE=10,求CD的長.16、(8分)如圖①,四邊形是正方形,點是邊的中點,,且交正方形的外角平分線于點請你認真閱讀下面關(guān)于這個圖形的探究片段,完成所提出的問題.(1)探究1:小強看到圖①后,很快發(fā)現(xiàn)這需要證明AE和EF所在的兩個三角形全等,但△ABE和△ECF顯然不全等(個直角三角形,一個鈍角三角形)考慮到點E是邊BC的中點,因此可以選取AB的中點M(如圖②),連接EM后嘗試著去證明就行了.隨即小強寫出了如下的證明過程:證明:如圖②,取AB的中點M,連接EM.∵∴又∵∴∵點E、M分別為正方形的邊BC和AB的中點,∴∴是等腰直角三角形,∴又∵是正方形外角的平分線,∴,∴∴∴,∴(2)探究2:小強繼續(xù)探索,如圖③,若把條件“點E是邊BC的中點”改為“點E是邊BC上的任意一點”,其余條件不變,發(fā)現(xiàn)AE=EF仍然成立小強進一步還想試試,如圖④,若把條件“點E是邊BC的中點”為“點E是邊BC延長線上的一點”,其余條件仍不變,那么結(jié)論AE=EF仍然成立請你選擇圖③或圖④中的一種情況寫出證明過程給小強看.17、(10分)某公司10名銷售員,去年完成的銷售額情況如表:銷售額(單位:萬元)34567810銷售員人數(shù)(單位:人)1321111(1)求銷售額的平均數(shù)、眾數(shù)、中位數(shù);(2)今年公司為了調(diào)動員工積極性,提高年銷售額,準備采取超額有獎的措施,請根據(jù)(1)的結(jié)果,通過比較,合理確定今年每個銷售員統(tǒng)一的銷售額標準是多少萬元?18、(10分)如圖,在菱形ABCD中,AC=8,BD=6,求△ABC的周長.B卷(50分)一、填空題(本大題共5個小題,每小題4分,共20分)19、(4分)如圖,已知正方形紙片ABCD,M,N分別是AD、BC的中點,把BC邊向上翻折,使點C恰好落在MN上的P點處,BQ為折痕,則∠BPN=_____度.20、(4分)如圖,AC是菱形ABCD的對角線,AC=8,AB=5,則菱形ABCD的面積是_________.21、(4分)計算:=_______.22、(4分)點P(m+2,2m+1)向右平移1個單位長度后,正好落在y軸上,則m=_____.23、(4分)函數(shù)y=與y=x-1的圖象的交點坐標為(x0,y0),則的值為_____________.二、解答題(本大題共3個小題,共30分)24、(8分)如圖,在中,,,點,分別是,上的點,且,連接交于點.(1)求證:.(2)若,延長交的延長線于點,當時,求的長.25、(10分)某中學舉行春季長跑比賽活動,小明從起點學校西門出發(fā),途經(jīng)市博物館后按原路返還,沿比賽路線跑回終點學校西門.設(shè)小明離開起點的路程s(千米)與跑步時間t(分鐘)之間的函數(shù)關(guān)系如圖所示,其中從起點到市博物館的平均速度是0.3千米/分鐘,用時35分鐘根據(jù)圖象提供的信息,解答下列問題:(1)求圖中的值,并求出所在直線方程;(2)組委會在距離起點2.1千米處設(shè)立一個拍攝點,小明從第一次過點到第二次經(jīng)過點所用的時間為68分鐘①求所在直線的函數(shù)解析式;②該運動員跑完賽程用時多少分鐘?26、(12分)如圖,已知點A(﹣2,0),點B(6,0),點C在第一象限內(nèi),且△OBC為等邊三角形,直線BC交y軸于點D,過點A作直線AE⊥BD于點E,交OC于點E(1)求直線BD的解析式;(2)求線段OF的長;(3)求證:BF=OE.
參考答案與詳細解析一、選擇題(本大題共8個小題,每小題4分,共32分,每小題均有四個選項,其中只有一項符合題目要求)1、B【解析】分析:求出當點E與點D重合時,即x=0時EC、AE、EF、BF的長可排除C、D;當點E與點C重合時,即x=2時,求出EC、AE的長可排除A,可得答案.詳解:當點E與點D重合時,即x=0時,EC=DC=2,AE=AD=2,∵∠A=60°,∠AEF=30°,∴∠AFD=90°,在Rt△ADF中,∵AD=2,∴AF=AD=1,EF=DF=ADcos∠ADF=,∴BF=AB-AF=1,結(jié)合圖象可知C、D錯誤;當點E與點C重合時,即x=2時,如圖,連接BD交AC于H,此時EC=0,故A錯誤;∵四邊形ABCD是菱形,∠BAD=60°,∴∠DAC=30°,∴AE=2AH=2ADcos∠DAC=2×2×=2,故B正確.故選:B.點睛:本題主要考查動點問題的函數(shù)圖象與菱形的性質(zhì)、解直角三角形的應(yīng)用,結(jié)合函數(shù)圖象上特殊點的實際意義排除法求解是解此題的關(guān)鍵.2、C【解析】
證明,得到,即是等腰三角形,同理是等腰三角形,根據(jù)題意求出,根據(jù)三角形中位線定理計算即可.【詳解】平分,,,,在和中,,,,是等腰三角形,同理是等腰三角形,點是中點,點是中點(三線合一),是的中位線,,,.故選.本題考查的是三角形中位線定理、等腰三角形的性質(zhì),掌握三角形的中位線平行于第三邊,并且等于第三邊的一半是解題的關(guān)鍵.3、D【解析】
由于平行四邊形的兩組對角分別相等,故只有D能判定是平行四邊形.其它三個選項不能滿足兩組對角相等,故不能判定.【詳解】解:根據(jù)平行四邊形的兩組對角分別相等,可知D正確.
故選:D.本題考查了平行四邊形的判定,運用了兩組對角分別相等的四邊形是平行四邊形這一判定方法.4、B【解析】
設(shè)從A地到B地的路程為S,甲走完全程所用時間為t甲,乙走完全程所用時間為t乙,根據(jù)題意,分別表示出甲、乙所用時間的代數(shù)式,然后再作比較即可?!驹斀狻拷猓涸O(shè)從到達目的地路程為S,甲走完全程所用時間為t甲,乙走完全程所用時間為t乙,由題意得,而對于乙:解得:因為當a≠b時,(a+b)2>4ab,所以<1所以t甲>t乙,即甲先到達,故答案為B.本題考查了根據(jù)實際問題列代數(shù)式,列代數(shù)式首先要弄清語句中各種數(shù)量的意義及其相互關(guān)系,本題解題的關(guān)鍵是表示出甲乙所用時間,并選擇適當?shù)姆椒ū容^出二者的大小.5、A【解析】
根據(jù)分式有意義的條件是分母不為0列出不等式,解可得自變量x的取值范圍,【詳解】由題意得,x-2≠0,解得,x≠2,故選A.本題主要考查了分式有意義的條件,掌握分式有意義的條件是分母不等于0是解題的關(guān)鍵.6、A【解析】試題分析:平行四邊形的對角線互相平分,而對角線相等、平分一組對角、互相垂直不一定成立.故平行四邊形、矩形、菱形、正方形都具有的性質(zhì)是:對角線互相平分.故選A.考點:特殊四邊形的性質(zhì)7、B【解析】
試題分析:利用一次函數(shù)平移規(guī)律得出平移后解析式,進而得出圖象與坐標軸交點坐標,進而利用圖象判斷y>0時,x的取值范圍.∵將一次函數(shù)y=x的圖象向上平移2個單位,∴平移后解析式為:y=x+2,當y=0時,x=﹣4,當x=0時,y=2,如圖:∴y>0,則x的取值范圍是:x>﹣4,考點:一次函數(shù)圖象與幾何變換.8、D【解析】
利用基本作圖得到EF垂直平分AB,根據(jù)垂直平分線的性質(zhì)可得DA=DB,根據(jù)等腰三角形的性質(zhì)可得∠B=∠DAB,然后利用等腰三角形的性質(zhì)可得∠ADC=40°,根據(jù)三角形外角性質(zhì)可得∠B=20°,根據(jù)三角形內(nèi)角和定理即可得答案.【詳解】由作法得EF垂直平分AB,∴DA=DB,∴∠B=∠DAB,∵AD=AC,∠C=40°,∴∠ADC=∠C=40°,∵∠ADC=∠B+∠DAB,∴∠B=∠ADC=20°,∴∠BAC=180°-∠B-∠C=120°.故選:D.本題考查的是基本尺規(guī)作圖和線段垂直平分線的性質(zhì),熟練掌握線段的垂直平分線上的點到線段的兩個端點的距離相等的性質(zhì)是解題的關(guān)鍵.二、填空題(本大題共5個小題,每小題4分,共20分)9、1【解析】
先根據(jù)不等式的性質(zhì)求出不等式的解集,再找出不等式的非負整數(shù)解相加即可.【詳解】所以不等式的非負整數(shù)解為0,1,2則所求的和為故答案為:1.本題考查了求一元一次不等式的整數(shù)解,掌握不等式的解法是解題關(guān)鍵.10、4.1【解析】
首先連接OP,由矩形的兩條邊AB、BC的長分別為6和1,可求得OA=OD=5,△AOD的面積,然后由S△AOD=S△AOP+S△DOP=OA?PE+OD?PF求得答案.【詳解】解:連接OP,
∵矩形的兩條邊AB、BC的長分別為6和1,
∴S矩形ABCD=AB?BC=41,OA=OC,OB=OD,AC=BD=,
∴OA=OD=5,
∴S△ACD=S矩形ABCD=24,
∴S△AOD=S△ACD=12,
∵S△AOD=S△AOP+S△DOP=OA?PE+OD?PF=×5×PE+×5×PF=(PE+PF)=12,
解得:PE+PF=4.1.
故答案為:4.1.此題考查了矩形的性質(zhì)以及三角形面積問題.此題難度適中,注意掌握輔助線的作法,注意掌握數(shù)形結(jié)合思想的應(yīng)用.11、1.【解析】試題分析:∵m是關(guān)于x的方程的一個根,∴,∴,∴=1,故答案為1.考點:一元二次方程的解;條件求值.12、3或1【解析】
分兩種情況討論:①當∠AFE=90°時,易知點F在對角線AC上,設(shè)DE=x,則AE、EF均可用x表示,在Rt△AEF中利用勾股定理構(gòu)造關(guān)于x的方程即可;②當∠AEF=90°時,易知F點在BC上,且四邊形EFCD是正方形,從而可得DE=CD.【詳解】解:當E點與A點重合時,∠EAF的角度最大,但∠EAF小于90°,所以∠EAF不可能為90°,分兩種情況討論:①當∠AFE=90°時,如圖1所示,根據(jù)折疊性質(zhì)可知∠EFC=∠D=90°,∴A、F、C三點共線,即F點在AC上,∵四邊形ABCD是矩形,∴AC=,∴AF=AC?CF=AC?CD=10?1=4,設(shè)DE=x,則EF=x,AE=8?x,在Rt△AEF中,利用勾股定理可得AE2=EF2+AF2,即(8?x)2=x2+42,解得x=3,即DE=3;②當∠AEF=90°時,如圖2所示,則∠FED=90°,∵∠D=∠BCD=90°,DE=EF,∴四邊形EFCD是正方形,∴DE=CD=1,故答案為:3或1.本題主要考查了翻折變換,以矩形為背景考查了勾股定理、折疊的對稱性,同時考查了分類討論思想,解決這類問題首先清楚折疊能夠提供給我們隱含的并且可利用的條件.解題時,我們常常設(shè)要求的線段長為x,然后根據(jù)折疊的性質(zhì)用含x的代數(shù)式表示其他線段的長度,選擇適當?shù)闹苯侨切危\用勾股定理列方程求出答案.13、.【解析】試題分析:首先根據(jù)菱形的對角線互相垂直平分,再利用勾股定理,求出BC的長是多少;然后再結(jié)合△ABC的面積的求法,求出菱形ABCD的高AE是多少即可.解:∵四邊形ABCD是菱形,∴AC、BD互相垂直平分,∴BO=BD=×8=4(cm),CO=AC=×6=3(cm),在△BCO中,由勾股定理,可得BC===5(cm)∵AE⊥BC,∴AE?BC=AC?BO,∴AE===(cm),即菱形ABCD的高AE為cm.故答案為.三、解答題(本大題共5個小題,共48分)14、.【解析】
先根據(jù)分式混合運算的法則把原式進行化簡,再把x的值代入進行計算即可【詳解】原式===,當x=1時,原式=.此題考查分式的化簡求值,解題關(guān)鍵在于利用完全平方公式和提取公因式法進行化簡15、CD=8.【解析】
根據(jù)直角三角形的性質(zhì)得出AE=CE=10,進而得出DE=6,利用勾股定理解答即可.【詳解】∵,為邊上的中線,∴.∵,∴.又∵為邊上的高,∴.此題考查直角三角形的性質(zhì),關(guān)鍵是根據(jù)直角三角形的性質(zhì)得出AE=CE=1.16、見解析【解析】
在AB上截取AM=EC,連接ME,然后證明∠EAM=FEC,∠AME=∠ECF=135°,再利用“角邊角”證明△AEM和△EFC全等,然后根據(jù)全等三角形對應(yīng)邊相等即可證明;【詳解】(2)探究2:選擇圖③進行證明:證明:如圖③在上截取,連接.由(1)知∠EAM=∠FEC,
∵AM=EC,AB=BC,
∴BM=BE,
∴∠BME=45°,
∴∠AME=∠ECF=135°,
∵∠AEF=90°,
∴∠FEC+∠AEB=90°,
又∵∠EAM+∠AEB=90°,
∴∠EAM=∠FEC,在△AEM和△EFC中,∴△AEM≌△EFC(ASA),
∴AE=EF;本題考查了正方形的性質(zhì),全等三角形的判定與性質(zhì),閱讀材料,理清解題的關(guān)鍵是取AM=EC,然后構(gòu)造出△AEM與△EFC全等是解題的關(guān)鍵.17、(1)平均數(shù)5.6(萬元);眾數(shù)是4(萬元);中位數(shù)是5(萬元);(2)今年每個銷售人員統(tǒng)一的銷售標準應(yīng)是5萬元.【解析】
(1)根據(jù)平均數(shù)公式求得平均數(shù),根據(jù)次數(shù)出現(xiàn)最多的數(shù)確定眾數(shù),按從小到大順序排列好后求得中位數(shù).
(2)根據(jù)平均數(shù),中位數(shù),眾數(shù)的意義回答.【詳解】解:(1)平均數(shù)=(3×1+4×3+5×2+6×1+7×1+8×1+10×1)=5.6(萬元);出現(xiàn)次數(shù)最多的是4萬元,所以眾數(shù)是4(萬元);因為第五,第六個數(shù)均是5萬元,所以中位數(shù)是5(萬元).(2)今年每個銷售人員統(tǒng)一的銷售標準應(yīng)是5萬元.理由如下:若規(guī)定平均數(shù)5.6萬元為標準,則多數(shù)人無法或不可能超額完成,會挫傷員工的積極性;若規(guī)定眾數(shù)4萬元為標準,則大多數(shù)人不必努力就可以超額完成,不利于提高年銷售額;若規(guī)定中位數(shù)5萬元為標準,則大多數(shù)人能完成或超額完成,少數(shù)人經(jīng)過努力也能完成.因此把5萬元定為標準比較合理.本題考查的知識點是眾數(shù)、平均數(shù)以及中位數(shù),解題的關(guān)鍵是熟練的掌握眾數(shù)、平均數(shù)以及中位數(shù).18、1.【解析】
利用菱形的性質(zhì)結(jié)合勾股定理得出AB的長,進而得出答案.【詳解】∵在菱形ABCD中,AC=8,BD=6,∴AB=BC,∠AOB=90°,AO=4,BO=3,∴BC=AB=,∴△ABC的周長=AB+BC+AC=5+5+8=1.本題主要考查菱形的性質(zhì),利用勾股定理,求出菱形的邊長,是解題的關(guān)鍵.一、填空題(本大題共5個小題,每小題4分,共20分)19、1【解析】
根據(jù)折疊的性質(zhì)知:可知:BN=BP,再根據(jù)∠BNP=90°即可求得∠BPN的值.【詳解】根據(jù)折疊的性質(zhì)知:BP=BC,∴BN=BC=BP,∵∠BNP=90°,∴∠BPN=1°,故答案為:1.本題考查了正方形的性質(zhì)、翻折變換(折疊問題)等知識,熟練掌握相關(guān)的性質(zhì)及定理是解題的關(guān)鍵.20、21【解析】
連接BD交AC于點O,已知AC即可求AO,菱形對角線互相垂直,所以△AOB為直角三角形,根據(jù)勾股定理即可求BO的值,即可求BD的值,根據(jù)AC、BD可以求菱形ABCD的面積.【詳解】如圖,連接BD交AC于點O.∵四邊形ABCD是菱形,∴AC⊥BD,AO=CO,BO=DO.∵AC=8,∴AO=1.在Rt△AOB中,BO3,∴BD=2BO=6,∴菱形ABCD的面積為S6×8=21.故答案為:21.本題考查了菱形的性質(zhì),勾股定理.根據(jù)勾股定理求BO的值是解題的關(guān)鍵.21、2+1【解析】試題解析:=.故答案為.22、-3【解析】點P(m+2,2m+1)向右平移1個單位長度后,正好落在y軸上,則23、【解析】解,得或.當時,;當時,;所以的值為二、解答題(本大題共3個小題,共30分)24、(1)見解析;(2).【解析】
(1)通過證明△ODF與△OBE全等即可求得.(2)由△ADB是等腰直角三角形,得出∠A=45°,因為EF⊥AB,得出∠G=45°,所以△ODG與△DFG都是等腰直角三角形,從而求得DG的長和EF=2,然后平行線分線段成比例定理即可求得.【詳解】解:(1)四邊形是平行四邊形,,,即.在與中,,.(2),,,,.,,,.,.,,.,,.本題考查全等三角形的判定與性質(zhì)、平行四邊形的性質(zhì)和等腰直角三角形,解題關(guān)鍵在于證明△ODF與△OBE全等即可25、(1);(2)①;②85分鐘【解析】
(1)根據(jù)路程=速度×時間,再把A點的值代入即可解決問題.(2)①先求出A、B兩點坐標即可解決問題.②令s=0,求出x的值即可解決問題.【詳解】解:(1)∵從起點到市博物館的平均速度是0.3千米/分鐘,用時35分鐘,∴千米.∴,設(shè)直線的解析式為:,把代入,得,解得,,∴直線的解析式為:;(2)①∵直線解析式為,∴當時,,解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度智能化窗戶安裝與維護安全協(xié)議書4篇
- 2025年度災(zāi)害預(yù)防慈善捐贈執(zhí)行合同范本4篇
- 二零二五版旅行社環(huán)保旅游推廣合作框架協(xié)議3篇
- 二零二五年度櫥柜安裝及家居安全檢測合同4篇
- 工業(yè)互聯(lián)網(wǎng)平臺核心技術(shù)與創(chuàng)新發(fā)展方案
- 2025年度個人綠色消費貸款展期服務(wù)合同4篇
- 小學數(shù)學課堂中的合作學習與互動實踐
- 職場安全教育如何保護老年員工的財產(chǎn)安全
- 二零二五年度房地產(chǎn)項目采購人員廉潔行為規(guī)范3篇
- 2025年度個人吊車租賃合同爭議解決及仲裁協(xié)議2篇
- 《縣域腫瘤防治中心評估標準》
- 做好八件事快樂過寒假-2024-2025學年上學期中學寒假家長會課件-2024-2025學年高中主題班會課件
- 人員密集場所消防安全培訓
- 液晶高壓芯片去保護方法
- 使用AVF血液透析患者的護理查房
- 拜太歲科儀文檔
- 2021年高考山東卷化學試題(含答案解析)
- 2020新譯林版高中英語選擇性必修一重點短語歸納小結(jié)
- GB/T 19668.7-2022信息技術(shù)服務(wù)監(jiān)理第7部分:監(jiān)理工作量度量要求
- 品管圈活動提高氧氣霧化吸入注意事項知曉率
- 連續(xù)鑄軋機的工作原理及各主要參數(shù)
評論
0/150
提交評論