河北省石家莊市四十中學(xué)2025屆九年級(jí)數(shù)學(xué)第一學(xué)期開學(xué)調(diào)研模擬試題【含答案】_第1頁
河北省石家莊市四十中學(xué)2025屆九年級(jí)數(shù)學(xué)第一學(xué)期開學(xué)調(diào)研模擬試題【含答案】_第2頁
河北省石家莊市四十中學(xué)2025屆九年級(jí)數(shù)學(xué)第一學(xué)期開學(xué)調(diào)研模擬試題【含答案】_第3頁
河北省石家莊市四十中學(xué)2025屆九年級(jí)數(shù)學(xué)第一學(xué)期開學(xué)調(diào)研模擬試題【含答案】_第4頁
河北省石家莊市四十中學(xué)2025屆九年級(jí)數(shù)學(xué)第一學(xué)期開學(xué)調(diào)研模擬試題【含答案】_第5頁
已閱讀5頁,還剩22頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

學(xué)校________________班級(jí)____________姓名____________考場____________準(zhǔn)考證號(hào)學(xué)校________________班級(jí)____________姓名____________考場____________準(zhǔn)考證號(hào)…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共8頁河北省石家莊市四十中學(xué)2025屆九年級(jí)數(shù)學(xué)第一學(xué)期開學(xué)調(diào)研模擬試題題號(hào)一二三四五總分得分批閱人A卷(100分)一、選擇題(本大題共8個(gè)小題,每小題4分,共32分,每小題均有四個(gè)選項(xiàng),其中只有一項(xiàng)符合題目要求)1、(4分)在同一平面直角坐標(biāo)系中的圖像如圖所示,則關(guān)于的不等式的解為().A. B. C. D.無法確定2、(4分)小明乘出租車去體育場,有兩條路線可供選擇:路線一的全程是25千米,但交通比較擁堵,路線二的全程是30千米,平均車速比走路線一時(shí)的平均車速能提高80%,因此能比走路線一少用10分鐘到達(dá).若設(shè)走路線一時(shí)的平均速度為x千米/小時(shí),根據(jù)題意,得A. B.C. D.3、(4分)直角三角形的三邊為a﹣b,a,a+b且a、b都為正整數(shù),則三角形其中一邊長可能為()A.61 B.71 C.81 D.914、(4分)要使分式有意義,則x的取值滿足的條件是()A. B. C. D.5、(4分)如圖,中,,,,AD是的平分線,則AD的長為A.5 B.4 C.3 D.26、(4分)下列幾組由組成的三角形不是直角三角形的是()A. B.C. D.7、(4分)打折前購買A商品40件與購買B商品30件所花的錢一樣多,商家打折促銷,A商品打八折,B商品打九折,此時(shí)購買A商品40件比購買B商品30件少花600元,則打折前A商品和B商品每件的價(jià)格分別為()A.75元,100元 B.120元,160元C.150元,200元 D.180元,240元8、(4分)已知不等式組的解集如圖所示(原點(diǎn)未標(biāo)出,數(shù)軸的單位長度為1),則的值為()A.4 B.3 C.2 D.1二、填空題(本大題共5個(gè)小題,每小題4分,共20分)9、(4分)已知點(diǎn)A(,)、B(,)在直線上,且直線經(jīng)過第一、三、四象限,當(dāng)時(shí),與的大小關(guān)系為____.10、(4分)如圖,菱形ABCD中,E、F分別是AB、AC的中點(diǎn),若EF=3,則菱形ABCD的周長是.11、(4分)如圖,正比例函數(shù)的圖象與反比例函數(shù)的圖象交于A(2,1),B兩點(diǎn),則不等式的解集是_________.12、(4分)比較大小:_____1.(填“>”、“=”或“<”)13、(4分)方程的根是______.三、解答題(本大題共5個(gè)小題,共48分)14、(12分)如圖,一次函數(shù)的圖像經(jīng)過點(diǎn)A(-1,0),并與反比例函數(shù)()的圖像交于B(m,4)(1)求的值;(2)以AB為一邊,在AB的左側(cè)作正方形,求C點(diǎn)坐標(biāo);(3)將正方形沿著軸的正方向,向右平移n個(gè)單位長度,得到正方形,線段的中點(diǎn)為點(diǎn),若點(diǎn)和點(diǎn)同時(shí)落在反比例函數(shù)的圖像上,求n的值.15、(8分)定義:我們把對角線互相垂直的四邊形叫做垂美四邊形.(1)概念理解:如圖2,在四邊形ABCD中,AB=AD,CB=CD,那么四邊形ABCD是垂美四邊形嗎?請說明理由.(2)性質(zhì)探究:①如圖1,垂美四邊形ABCD兩組對邊AB、CD與BC、AD之間有怎樣的數(shù)量關(guān)系?寫出你的猜想,并給出證明.②如圖3,在Rt△ABC中,點(diǎn)F為斜邊BC的中點(diǎn),分別以AB,AC為底邊,在外部作等腰三角形ABD和等腰三角形ACE,連接FD,F(xiàn)E,分別交AB,AC于點(diǎn)M,N.試猜想四邊形FMAN的形狀,并說明理由;(3)問題解決:如圖4,分別以Rt△ACB的直角邊AC和斜邊AB為邊向外作正方形ACFG和正方形ABDE,連接CE、BG,GE,已知AC=2,AB=1.求GE的長度.16、(8分)某工廠從外地購得A種原料16噸,B種原料13噸,現(xiàn)計(jì)劃租用甲、乙兩種貨車6輛將購得的原料一次性運(yùn)回工廠,已知一輛甲種貨車可裝2噸A種原料和3噸B種原料;一輛乙種貨車可裝3噸A種原料和2噸B種原料,設(shè)安排甲種貨車x輛.(1)如何安排甲、乙兩種貨車?寫出所有可行方案;(2)若甲種貨車的運(yùn)費(fèi)是每輛500元,乙種貨車的運(yùn)費(fèi)是每輛350元,設(shè)總運(yùn)費(fèi)為W元,求W(元)與x(輛)之間的函數(shù)關(guān)系式;(3)在(2)的前提下,當(dāng)x為何值時(shí),總運(yùn)費(fèi)最少,此時(shí)總運(yùn)費(fèi)是多少元?17、(10分)某中學(xué)形展“唱紅歌”比賽活動(dòng),九年級(jí)(1)、(2)班根據(jù)初賽成績,各選出5名選手參加復(fù)賽,兩個(gè)班各選出的5名選手的復(fù)賽成績?nèi)鐖D所示.(1)根據(jù)圖示填寫下表:班級(jí)平均數(shù)(分)中位數(shù)(分)眾數(shù)(分)九(1)85九(2)85100(2)結(jié)合兩班復(fù)賽成績的平均數(shù)和中位數(shù),分析哪個(gè)班級(jí)的復(fù)賽成績較好;(3)計(jì)算兩班復(fù)賽成績的方差.18、(10分)某文具店用1050元購進(jìn)第一批某種鋼筆,很快賣完,又用1440元購進(jìn)第二批該種鋼筆,但第二批每支鋼筆的進(jìn)價(jià)是第一批進(jìn)價(jià)的1.2倍,數(shù)量比第一批多了10支.(1)求第一批每支鋼筆的進(jìn)價(jià)是多少元?(2)第二批鋼筆按24元/支的價(jià)格銷售,銷售一定數(shù)量后,根據(jù)市場情況,商店決定對剩余的鋼筆全按8折一次性打折銷售,但要求第二批鋼筆的利潤率不低于20%,問至少銷售多少支后開始打折?B卷(50分)一、填空題(本大題共5個(gè)小題,每小題4分,共20分)19、(4分)勾股定理是幾何中的一個(gè)重要定理.在我國古算書《周髀算經(jīng)》中就有“若勾三,股四,則弦五”的記載.如圖1是由邊長相等的小正方形和直角三角形構(gòu)成的,可以用其面積關(guān)系驗(yàn)證勾股定理.圖2是把圖1放入長方形內(nèi)得到的,,AB=3,AC=4,點(diǎn)D,E,F(xiàn),G,H,I都在長方形KLMJ的邊上,則長方形KLMJ的面積為___.20、(4分)如圖,兩張等寬的紙條交叉疊放在一起,若重合部分構(gòu)成的四邊形中,,,則的長為_______________.21、(4分)如圖,正方形AFCE中,D是邊CE上一點(diǎn),把繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°,點(diǎn)D對應(yīng)點(diǎn)交CF延長線于點(diǎn)B,若四邊形ABCD的面積是、則AC長__________cm.22、(4分)如圖,在平行四邊形ABCD中,E為AD邊上一點(diǎn),且AE=AB,若∠BED=160°,則∠D的度數(shù)為__________.23、(4分)化簡:()-()=______.二、解答題(本大題共3個(gè)小題,共30分)24、(8分)如圖,正方形中,經(jīng)順時(shí)針旋轉(zhuǎn)后與重合.(1)旋轉(zhuǎn)中心是點(diǎn),旋轉(zhuǎn)了度;(2)如果,,求的長.25、(10分)如圖,直線分別交x軸、y軸于A、B兩點(diǎn),直線BC與x軸交于點(diǎn),P是線段AB上的一個(gè)動(dòng)點(diǎn)點(diǎn)P與A、B不重合.(1)求直線BC所對應(yīng)的的函數(shù)表達(dá)式;(2)設(shè)動(dòng)點(diǎn)P的橫坐標(biāo)為t,的面積為S.①求出S與t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍;②在線段BC上存在點(diǎn)Q,使得四邊形COPQ是平行四邊形,求此時(shí)點(diǎn)Q的坐標(biāo).26、(12分)心理學(xué)研究發(fā)現(xiàn),一般情況下,在一節(jié)45分鐘的課中,學(xué)生的注意力隨學(xué)習(xí)時(shí)間的變化而變化.開始學(xué)習(xí)時(shí),學(xué)生的注意力逐步增強(qiáng),中間有一段時(shí)間學(xué)生的注意力保持較為理想的穩(wěn)定狀態(tài),隨后學(xué)生的注意力開始分散.經(jīng)過實(shí)驗(yàn)分析可知,學(xué)生的注意力指標(biāo)數(shù)y隨時(shí)間x(分鐘)的變化規(guī)律如下圖所示(其中、分別為線段,為雙曲線的一部分)。(1)開始學(xué)習(xí)后第5分鐘時(shí)與第35分鐘時(shí)相比較,何時(shí)學(xué)生的注意力更集中?(2)某些數(shù)學(xué)內(nèi)容的課堂學(xué)習(xí)大致可分為三個(gè)環(huán)節(jié):即“教師引導(dǎo),回顧舊知——自主探索,合作交流——總結(jié)歸納,鞏固提高”.其中重點(diǎn)環(huán)節(jié)“自主探索,合作交流”這一過程一般需要30分鐘才能完成,為了確保效果,要求學(xué)習(xí)時(shí)的注意力指標(biāo)數(shù)不低于40,請問這樣的課堂學(xué)習(xí)安排是否合理?并說明理由.

參考答案與詳細(xì)解析一、選擇題(本大題共8個(gè)小題,每小題4分,共32分,每小題均有四個(gè)選項(xiàng),其中只有一項(xiàng)符合題目要求)1、C【解析】

求關(guān)于的不等式的解集就是求:能使函數(shù)的圖象在函數(shù)的上邊的自變量的取值范圍.【詳解】解:能使函數(shù)的圖象在函數(shù)的上邊時(shí)的自變量的取值范圍是.故關(guān)于的不等式的解集為:.故選:.本題考查了一次函數(shù)與一元一次不等式的關(guān)系,從函數(shù)的角度看,就是尋求使一次函數(shù)的值大于(或小于)0的自變量的取值范圍;從函數(shù)圖象的角度看,就是確定直線在軸上(或下)方部分所有的點(diǎn)的橫坐標(biāo)所構(gòu)成的集合.利用數(shù)形結(jié)合是解題的關(guān)鍵.2、A【解析】若設(shè)走路線一時(shí)的平均速度為x千米/小時(shí),根據(jù)路線一的全程是25千米,但交通比較擁堵,路線二的全程是30千米,平均車速比走路線一時(shí)的平均車速能提高80%,因此能比走路線一少用10分鐘到達(dá)可列出方程.解:設(shè)走路線一時(shí)的平均速度為x千米/小時(shí),故選A.3、C【解析】由題可知:(a?b)2+a2=(a+b)2,解之得:a=4b,所以直角三角形三邊分別為3b、4b、5b.當(dāng)b=27時(shí),3b=81.故選C.4、B【解析】

根據(jù)分式有意義的條件是分母不等于零可得x+2≠0;解不等式可得結(jié)果,從而得出正確選項(xiàng).【詳解】由分式有意義的條件可得x+2≠0,解得x≠-2.故答案選B.本題考查了分式有意義的條件,解題的關(guān)鍵是掌握分式有意義的條件是分母不等于零.5、C【解析】

先根據(jù)等腰三角形的性質(zhì):底邊上的三線合一,得出AD⊥BC,BD=BC,再由勾股定理求出AD的長.【詳解】∵在△ABC中,AB=AC,AD是∠BAC的平分線,

∴AD⊥BC,BD=BC.

∵BC=8,∴BD=4在RtABD中AD==3

故選C.本題考查了等腰三角形的性質(zhì)以及勾股定理的知識(shí),熟練掌握等腰三角形的性質(zhì)是解題的關(guān)鍵.6、A【解析】分析:根據(jù)勾股定理的逆定理:如果三角形有兩邊的平方和等于第三邊的平方,那么這個(gè)是直角三角形判定則可.如果有這種關(guān)系,就是直角三角形,沒有這種關(guān)系,就不是直角三角形.詳解:A、12+()2=3≠22,不符合勾股定理的逆定理,不是直角三角形,故此選項(xiàng)正確;B、72+242=252,符合勾股定理的逆定理,是直角三角形,故此選項(xiàng)錯(cuò)誤;C、62+82=102,符合勾股定理的逆定理,是直角三角形,故此選項(xiàng)錯(cuò)誤;D、52+122=132,符合勾股定理的逆定理,是直角三角形,故此選項(xiàng)錯(cuò)誤;故選A.點(diǎn)睛:本題考查了勾股定理的逆定理,在應(yīng)用勾股定理的逆定理時(shí),應(yīng)先認(rèn)真分析所給邊的大小關(guān)系,確定最大邊后,再驗(yàn)證兩條較小邊的平方和與最大邊的平方之間的關(guān)系,進(jìn)而作出判斷.7、C【解析】

設(shè)打折前商品價(jià)格為元,商品為元,根據(jù)題意列出關(guān)于與的方程組,求出方程組的解即可得到結(jié)果.【詳解】設(shè)打折前商品價(jià)格為元,商品為元,根據(jù)題意得:,解得:,則打折前商品價(jià)格為元,商品為元.故選:.此題考查了二元一次方程組的應(yīng)用,分析題意,找到關(guān)鍵描述語,找到合適的等量關(guān)系時(shí)解決問題的關(guān)鍵.8、A【解析】

首先解不等式組,然后即可判定的值.【詳解】,解得,解得由數(shù)軸,得故選:A.此題主要考查根據(jù)不等式組的解集求參數(shù)的值,熟練掌握,即可解題.二、填空題(本大題共5個(gè)小題,每小題4分,共20分)9、【解析】

根據(jù)直線經(jīng)過第一、三、四象限得到k>0,再根據(jù)圖像即可求解.【詳解】∵直線經(jīng)過第一、三、四象限∴k>0,∴y隨x的增大而增大,∵,∴故填:.此題主要考查一次函數(shù)圖像,解題的關(guān)鍵是熟知一次函數(shù)的圖像與性質(zhì).10、1.【解析】

根據(jù)三角形的中位線平行于第三邊并且等于第三邊的一半求出BC,再根據(jù)菱形的周長公式列式計(jì)算即可得解.【詳解】∵E、F分別是AB、AC的中點(diǎn),∴EF是△ABC的中位線,∴BC=2EF=2×3=6,∴菱形ABCD的周長=4BC=4×6=1.故答案為1.本題主要考查了菱形的四條邊都相等,三角形的中位線平行于第三邊并且等于第三邊的一半,求出菱形的邊長是解題的關(guān)鍵.11、﹣1<x<0或x>1【解析】

根據(jù)一次函數(shù)圖象與反比例函數(shù)圖象的上下位置關(guān)系結(jié)合交點(diǎn)坐標(biāo),即可得出不等式的解集.【詳解】∵正比例函數(shù)y=kx的圖象與反比例函數(shù)y的圖象交于A(1,1),B兩點(diǎn),∴B(﹣1,﹣1).觀察函數(shù)圖象,發(fā)現(xiàn):當(dāng)﹣1<x<0或x>1時(shí),正比例函數(shù)圖象在反比例函數(shù)圖象的上方,∴不等式kx的解集是﹣1<x<0或x>1.故答案為:﹣1<x<0或x>1.本題考查了反比例函數(shù)與一次函數(shù)的交點(diǎn)問題,解題的關(guān)鍵是根據(jù)兩函數(shù)圖象的上下位置關(guān)系解不等式.本題屬于基礎(chǔ)題,難度不大,解決該題型題目時(shí),根據(jù)兩函數(shù)圖象的上下位置關(guān)系結(jié)合交點(diǎn)坐標(biāo)得出不等式的解集是關(guān)鍵.12、>.【解析】【分析】先求出1=,再比較即可.【詳解】∵12=9<10,∴>1,故答案為:>.【點(diǎn)睛】本題考查了實(shí)數(shù)的大小比較和算術(shù)平方根的應(yīng)用,用了把根號(hào)外的因式移入根號(hào)內(nèi)的方法.13、【解析】

對原方程移項(xiàng)化簡,即可求出x,然后再檢驗(yàn)即可.【詳解】解:x=2,經(jīng)檢驗(yàn)x=2是分式方程的解.本題考查了解分式方程,熟練掌握解方程的方法是解題關(guān)鍵.三、解答題(本大題共5個(gè)小題,共48分)14、(1)k1=4;(2)C點(diǎn)坐標(biāo)為(-3,6);(3)n=.【解析】

(1)把A點(diǎn)坐標(biāo)代入y=2x+b,可求出b值,把B(m,4)代入可求出m值,代入即可求出k1的值;(2)過B作BF⊥x軸于F,過C作CG⊥FB,交FB的延長線于G,利用AAS可證明△CBG≌△BAF,可得AF=BG,CG=BF,根據(jù)A、B兩點(diǎn)坐標(biāo)即可得C點(diǎn)坐標(biāo);(3)由A、B、C三點(diǎn)坐標(biāo)可得向右平移n個(gè)單位后A1、B1、C1的坐標(biāo),即可得E點(diǎn)坐標(biāo),根據(jù)k2=xy列方程即可求出n值.【詳解】(1)∵一次函數(shù)的圖像經(jīng)過點(diǎn)A(-1,0),∴-2+b=0,解得:b=2,∵點(diǎn)B(m,4)在一次函數(shù)y=2x+2上,∴4=2m+2,解得:m=1,∵B(1,4)在反比例函數(shù)圖象上,∴k1=4.(2)如圖,過B作BF⊥x軸于F,過C作CG⊥FB,交FB的延長線于G,∵A(-1,0),B(1,4),∴AF=2,BF=4,∴∠GCB+∠CBG=90°,∵四邊形ABCD是正方形,∴∠ABC=90°,∴∠ABF+∠CBG=90°,∴∠GCB=∠ABF,又∵BC=AB,∠AFB=∠CGB=90°,∴△CBG≌△BAF,∴BG=AF=2,CG=BF=4,∴GF=6,∵在AB的左側(cè)作正方形ABCD,∴C點(diǎn)坐標(biāo)為(-3,6).(3)∵正方形ABCD沿x軸的正方向,向右平移n個(gè)單位長度,∴A1(-1+n,0),B1(1+n,4),C1(-3+n,6),∵線段A1B1的中點(diǎn)為點(diǎn)E,∴E(n,2),∵點(diǎn)和點(diǎn)E同時(shí)落在反比例函數(shù)的圖像上,∴k2=2n=6(-3+n)解得:n=.本題考查一次函數(shù)與反比例函數(shù)綜合,涉及的知識(shí)點(diǎn)有平移的性質(zhì)、全等三角形的性質(zhì),一次函數(shù)和反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征及正方形的性質(zhì),熟練掌握性質(zhì)和定理是解題關(guān)鍵.15、(1)四邊形ABCD是垂美四邊形,證明見解析(2)①,證明見解析;②四邊形FMAN是矩形,證明見解析(3)【解析】

(1)根據(jù)垂直平分線的判定定理證明即可;(2)①根據(jù)垂直的定義和勾股定理解答即可;②根據(jù)在Rt△ABC中,點(diǎn)F為斜邊BC的中點(diǎn),可得,再根據(jù)△ABD和△ACE是等腰三角形,可得,再由(1)可得,,從而判定四邊形FMAN是矩形;(3)根據(jù)垂美四邊形的性質(zhì)、勾股定理、結(jié)合(2)的結(jié)論計(jì)算即可.【詳解】(1)四邊形ABCD是垂美四邊形連接AC、BD∵∴點(diǎn)A在線段BD的垂直平分線上∵∴點(diǎn)C在線段BD的垂直平分線上∴直線AC是線段BD的垂直平分線∴∴四邊形ABCD是垂美四邊形;(2)①,理由如下如圖,已知四邊形ABCD中,,垂足為E由勾股定理得②四邊形FMAN是矩形,理由如下如圖,連接AF∵在Rt△ABC中,點(diǎn)F為斜邊BC的中點(diǎn)∵△ABD和△ACE是等腰三角形由(1)可得,∵∴四邊形FMAN是矩形;(3)連接CG、BE,,即在△AGB和△ACE中∵,即∴四邊形CGEB是垂美四邊形由(2)得.本題考查了垂美四邊形的問題,掌握垂直平分線的判定定理、垂直的定義、勾股定理、垂美四邊形的性質(zhì)、全等三角形的性質(zhì)以及判定定理是解題的關(guān)鍵.16、(1)有兩種可行方案,方案一:安排甲種貨車1輛,乙種貨車5輛,方案二:安排甲種貨車2輛,乙種貨車4輛;(2)x為1時(shí),總運(yùn)費(fèi)最少,此時(shí)總運(yùn)費(fèi)是2250元.【解析】【分析】(1)依題意得,解不等式組即可;(2)直接根據(jù)數(shù)量關(guān)系可列W=500x+350(6?x)=150x+2100;(3)結(jié)合(1)和(2),當(dāng)x最小時(shí),運(yùn)費(fèi)最少.【詳解】(1)由題意可得,,解得,1?x?2,∴有兩種可行方案,方案一:安排甲種貨車1輛,乙種貨車5輛,方案二:安排甲種貨車2輛,乙種貨車4輛;(2)由題意可得,W=500x+350(6?x)=150x+2100,即W(元)與x(輛)之間的函數(shù)關(guān)系式是W=150x+2100;(3)由(2)知,W=150x+2100,∵1?x?2,∴當(dāng)x=1時(shí),W取得最小值,此時(shí)W=2250,答:x為1時(shí),總運(yùn)費(fèi)最少,此時(shí)總運(yùn)費(fèi)是2250元.【點(diǎn)睛】此題考核知識(shí)點(diǎn):列不等式組解應(yīng)用題;求函數(shù)的最小值.解題的關(guān)鍵是:根據(jù)題意列出不等式組,并求出解集;分析函數(shù)解析式中函數(shù)值與自變量之間的關(guān)系,從而輕易確定函數(shù)最小值.17、(1)九(1)的平均數(shù)為85,眾數(shù)為85,九(2)班的中位數(shù)是80;(2)九(1)班成績好些,分析見解析;(3)=70,=100【解析】

(1)先根據(jù)條形統(tǒng)計(jì)圖得出每個(gè)班5名選手的復(fù)賽成績,然后平均數(shù)按照公式,中位數(shù)和眾數(shù)按照概念即可得出答案;(2)對比平均數(shù)和中位數(shù),平均數(shù)和中位數(shù)大的成績較好;(3)按照方差的計(jì)算公式計(jì)算即可.【詳解】解:(1)由圖可知九(1)班5名選手的復(fù)賽成績?yōu)椋?5、80、85、85、100,九(2)班5名選手的復(fù)賽成績?yōu)椋?0、100、100、75、80,∴九(1)的平均數(shù)為(75+80+85+85+100)÷5=85,九(1)的眾數(shù)為85,把九(2)的成績按從小到大的順序排列為:70、75、80、100、100,∴九(2)班的中位數(shù)是80;(2)九(1)班成績好些.因?yàn)閮蓚€(gè)班平均分相同,但九(1)班的中位數(shù)高,所以九(1)班成績好些.(3)==70==100本題主要考查數(shù)據(jù)的統(tǒng)計(jì)與分析,掌握平均數(shù),中位數(shù),眾數(shù)和方差是解題的關(guān)鍵.18、(1)15元;(2)1支.【解析】試題分析:(1)設(shè)第一批文具盒的進(jìn)價(jià)是x元,則第二批的進(jìn)價(jià)是每只1.2x元,根據(jù)兩次購買的數(shù)量關(guān)系建立方程求出其解即可;(2)設(shè)銷售y只后開始打折,根據(jù)第二批文具盒的利潤率不低于20%,列出不等式,再求解即可.試題解析:解:(1)設(shè)第一批每只文具盒的進(jìn)價(jià)是x元,根據(jù)題意得:﹣=10解得:x=15,經(jīng)檢驗(yàn),x=15是方程的解.答:第一批文具盒的進(jìn)價(jià)是15元/只.(2)設(shè)銷售y只后開始打折,根據(jù)題意得:(24﹣15×1.2)y+(﹣y)(24×80%﹣15×1.2)≥141×20%,解得:y≥1.答:至少銷售1只后開始打折.點(diǎn)睛:本題考查了列分式方程和一元一次不等式的應(yīng)用,解答時(shí)找到題意中的等量關(guān)系及不相等關(guān)系建立方程及不等式是解答的關(guān)鍵.一、填空題(本大題共5個(gè)小題,每小題4分,共20分)19、110【解析】

延長AB交KF于點(diǎn)O,延長AC交GM于點(diǎn)P,可得四邊形AOLP是正方形,然后求出正方形的邊長,再求出矩形KLMJ的長與寬,然后根據(jù)矩形的面積公式列式計(jì)算即可得解.【詳解】如圖,延長AB交KF于點(diǎn)O,延長AC交GM于點(diǎn)P,則四邊形OALP是矩形.

∵∠CBF=90°,

∴∠ABC+∠OBF=90°,

又∵直角△ABC中,∠ABC+∠ACB=90°,

∴∠OBF=∠ACB,

在△OBF和△ACB中,

∴△OBF≌△ACB(AAS),

∴AC=OB,

同理:△ACB≌△PGC,

∴PC=AB,

∴OA=AP,

所以,矩形AOLP是正方形,

邊長AO=AB+AC=3+4=7,

所以,KL=3+7=10,LM=4+7=11,

因此,矩形KLMJ的面積為10×11=110.本題考查勾股定理,解題的關(guān)鍵是讀懂題意,掌握勾股定理.20、4【解析】

首先由對邊分別平行可判斷四邊形ABCD為平行四邊形,連接AC和BD,過A點(diǎn)分別作DC和BC的垂線,垂足分別為F和E,通過證明△ADF≌△ABC來證明四邊形ABCD為菱形,從而得到AC與BD相互垂直平分,再利用勾股定理求得BD長度.【詳解】解:連接AC和BD,其交點(diǎn)為O,過A點(diǎn)分別作DC和BC的垂線,垂足分別為F和E,∵AB∥CD,AD∥BC,∴四邊形ABCD為平行四邊形,∴∠ADF=∠ABE,∵兩紙條寬度相同,∴AF=AE,∵∴△ADF≌△ABE,∴AD=AB,∴四邊形ABCD為菱形,∴AC與BD相互垂直平分,∴BD=故本題答案為:4本題考察了菱形的相關(guān)性質(zhì),綜合運(yùn)用了三角形全等和勾股定理,注意輔助線的構(gòu)造一定要從相關(guān)條件以及可運(yùn)用的證明工具入手,不要盲目作輔助線.21、2【解析】

根據(jù)旋轉(zhuǎn)的性質(zhì)得到S△AED=S△AFB,根據(jù)四邊形ABCD的面積是18cm1得出正方形AFCE的面積是18cm1,求出AE、EC的長,根據(jù)等腰直角三角形的性質(zhì)求出AC即可.【詳解】解:∵四邊形AFCE是正方形,∴AE=EC,∠E=90°,△ADE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°,點(diǎn)D對應(yīng)點(diǎn)交CF延長線于點(diǎn)B,∴△ABF≌△ADE,∴正方形AFCE的面積=四邊形ABCD的面積=18cm1.∴AE=CE==,∴AC=AE=2cm.故答案為:2.本題考查了旋轉(zhuǎn)的性質(zhì),全等三角形的性質(zhì),正方形性質(zhì),關(guān)鍵是求出正方形AFCE的邊長.22、40°.【解析】

根據(jù)平行四邊形的性質(zhì)得到AD∥BC,求得∠AEB=∠CBE,根據(jù)等腰三角形的性質(zhì)得到∠ABE=∠AEB,根據(jù)平角的定義得到∠AEB=20°,可得∠ABC的度數(shù),根據(jù)平行四邊形的對角相等即可得結(jié)論.【詳解】解:∵四邊形ABCD是平行四邊形,∴AD∥BC,∴∠AEB=∠CBE,∵AB=AE,∴∠ABE=∠AEB,∵∠BED=160°,∴∠AEB=20°,∴∠ABC=∠ABE+∠CBE=2∠AEB=40°,∴∠D=∠ABC=40°.故答案為40°.本題考查平行四邊形的性質(zhì),平行線的性質(zhì),等腰三角形的性質(zhì),正確的識(shí)別圖形是解題的關(guān)鍵.23、.【解析】由去括號(hào)的法則可得:=,然后由加法的交換律與結(jié)合律可得:,繼而求得答案.解:====.故答案為.二、解答題(本大題共3個(gè)小題,共30分)24、(1)A,90;(2).【解析】

(1)根據(jù)正方形的性質(zhì)得AB=AD,∠BAD=90°,則根據(jù)旋轉(zhuǎn)的定義得到△ADE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°后與△ABF重合;

(2)根據(jù)旋轉(zhuǎn)的性質(zhì)得BF=DE,S△ABF=S△ADE,利用CF=CB+BF=8得到BC+DE=8,再加上CE=CD-DE=BC-DE=4,于是可計(jì)算出BC=6,于是得到結(jié)論.【詳解】解:(1)∵四邊形ABCD為正方形,

∴AB=AD,∠BAD=90°,

∴△ADE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°后與△ABF重合,

即旋轉(zhuǎn)中心是點(diǎn)A,旋轉(zhuǎn)了90度;

故答案為A,90;

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論