版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年江蘇省啟東市建新中學(xué)高三下學(xué)期3月月考數(shù)學(xué)試題試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)。回答非選擇題時(shí),將答案寫在答題卡上,寫在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.由實(shí)數(shù)組成的等比數(shù)列{an}的前n項(xiàng)和為Sn,則“a1>0”是“S9>S8”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件2.已知函,,則的最小值為()A. B.1 C.0 D.3.拋物線的焦點(diǎn)為,準(zhǔn)線為,,是拋物線上的兩個(gè)動(dòng)點(diǎn),且滿足,設(shè)線段的中點(diǎn)在上的投影為,則的最大值是()A. B. C. D.4.已知函數(shù)有兩個(gè)不同的極值點(diǎn),,若不等式有解,則的取值范圍是()A. B.C. D.5.已知等式成立,則()A.0 B.5 C.7 D.136.兩圓和相外切,且,則的最大值為()A. B.9 C. D.17.已知拋物線的焦點(diǎn)為,準(zhǔn)線為,是上一點(diǎn),是直線與拋物線的一個(gè)交點(diǎn),若,則()A. B.3 C. D.28.根據(jù)黨中央關(guān)于“精準(zhǔn)”脫貧的要求,我市某農(nóng)業(yè)經(jīng)濟(jì)部門派四位專家對(duì)三個(gè)縣區(qū)進(jìn)行調(diào)研,每個(gè)縣區(qū)至少派一位專家,則甲,乙兩位專家派遣至同一縣區(qū)的概率為()A. B. C. D.9.已知數(shù)列的前項(xiàng)和為,且,,,則的通項(xiàng)公式()A. B. C. D.10.設(shè)f(x)是定義在R上的偶函數(shù),且在(0,+∞)單調(diào)遞減,則()A. B.C. D.11.已知x,y滿足不等式組,則點(diǎn)所在區(qū)域的面積是()A.1 B.2 C. D.12.“角谷猜想”的內(nèi)容是:對(duì)于任意一個(gè)大于1的整數(shù),如果為偶數(shù)就除以2,如果是奇數(shù),就將其乘3再加1,執(zhí)行如圖所示的程序框圖,若輸入,則輸出的()A.6 B.7 C.8 D.9二、填空題:本題共4小題,每小題5分,共20分。13.已知,滿足,則的展開式中的系數(shù)為______.14.已知數(shù)列的前項(xiàng)和為且滿足,則數(shù)列的通項(xiàng)_______.15.已知橢圓Г:,F(xiàn)1、F2是橢圓Г的左、右焦點(diǎn),A為橢圓Г的上頂點(diǎn),延長(zhǎng)AF2交橢圓Г于點(diǎn)B,若為等腰三角形,則橢圓Г的離心率為___________.16.己知函數(shù),若曲線在處的切線與直線平行,則__________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù),曲線在點(diǎn)處的切線在y軸上的截距為.(1)求a;(2)討論函數(shù)和的單調(diào)性;(3)設(shè),求證:.18.(12分)已知四棱錐中,底面為等腰梯形,,,,丄底面.(1)證明:平面平面;(2)過(guò)的平面交于點(diǎn),若平面把四棱錐分成體積相等的兩部分,求二面角的余弦值.19.(12分)已知,求的最小值.20.(12分)(1)求曲線和曲線圍成圖形的面積;(2)化簡(jiǎn)求值:.21.(12分)在中,內(nèi)角的對(duì)邊分別為,且(1)求;(2)若,且面積的最大值為,求周長(zhǎng)的取值范圍.22.(10分)已知,如圖,曲線由曲線:和曲線:組成,其中點(diǎn)為曲線所在圓錐曲線的焦點(diǎn),點(diǎn)為曲線所在圓錐曲線的焦點(diǎn).(Ⅰ)若,求曲線的方程;(Ⅱ)如圖,作直線平行于曲線的漸近線,交曲線于點(diǎn),求證:弦的中點(diǎn)必在曲線的另一條漸近線上;(Ⅲ)對(duì)于(Ⅰ)中的曲線,若直線過(guò)點(diǎn)交曲線于點(diǎn),求面積的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.C【解析】
根據(jù)等比數(shù)列的性質(zhì)以及充分條件和必要條件的定義進(jìn)行判斷即可.【詳解】解:若{an}是等比數(shù)列,則,
若,則,即成立,
若成立,則,即,
故“”是“”的充要條件,
故選:C.【點(diǎn)睛】本題主要考查充分條件和必要條件的判斷,利用等比數(shù)列的通項(xiàng)公式是解決本題的關(guān)鍵.2.B【解析】
,利用整體換元法求最小值.【詳解】由已知,又,,故當(dāng),即時(shí),.故選:B.【點(diǎn)睛】本題考查整體換元法求正弦型函數(shù)的最值,涉及到二倍角公式的應(yīng)用,是一道中檔題.3.B【解析】
試題分析:設(shè)在直線上的投影分別是,則,,又是中點(diǎn),所以,則,在中,所以,即,所以,故選B.考點(diǎn):拋物線的性質(zhì).【名師點(diǎn)晴】在直線與拋物線的位置關(guān)系問(wèn)題中,涉及到拋物線上的點(diǎn)到焦點(diǎn)的距離,焦點(diǎn)弦長(zhǎng),拋物線上的點(diǎn)到準(zhǔn)線(或與準(zhǔn)線平行的直線)的距離時(shí),常??紤]用拋物線的定義進(jìn)行問(wèn)題的轉(zhuǎn)化.象本題弦的中點(diǎn)到準(zhǔn)線的距離首先等于兩點(diǎn)到準(zhǔn)線距離之和的一半,然后轉(zhuǎn)化為兩點(diǎn)到焦點(diǎn)的距離,從而與弦長(zhǎng)之間可通過(guò)余弦定理建立關(guān)系.4.C【解析】
先求導(dǎo)得(),由于函數(shù)有兩個(gè)不同的極值點(diǎn),,轉(zhuǎn)化為方程有兩個(gè)不相等的正實(shí)數(shù)根,根據(jù),,,求出的取值范圍,而有解,通過(guò)分裂參數(shù)法和構(gòu)造新函數(shù),通過(guò)利用導(dǎo)數(shù)研究單調(diào)性、最值,即可得出的取值范圍.【詳解】由題可得:(),因?yàn)楹瘮?shù)有兩個(gè)不同的極值點(diǎn),,所以方程有兩個(gè)不相等的正實(shí)數(shù)根,于是有解得.若不等式有解,所以因?yàn)?設(shè),,故在上單調(diào)遞增,故,所以,所以的取值范圍是.故選:C.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)單調(diào)性、最值來(lái)求參數(shù)取值范圍,以及運(yùn)用分離參數(shù)法和構(gòu)造函數(shù)法,還考查分析和計(jì)算能力,有一定的難度.5.D【解析】
根據(jù)等式和特征和所求代數(shù)式的值的特征用特殊值法進(jìn)行求解即可.【詳解】由可知:令,得;令,得;令,得,得,,而,所以.故選:D【點(diǎn)睛】本題考查了二項(xiàng)式定理的應(yīng)用,考查了特殊值代入法,考查了數(shù)學(xué)運(yùn)算能力.6.A【解析】
由兩圓相外切,得出,結(jié)合二次函數(shù)的性質(zhì),即可得出答案.【詳解】因?yàn)閮蓤A和相外切所以,即當(dāng)時(shí),取最大值故選:A【點(diǎn)睛】本題主要考查了由圓與圓的位置關(guān)系求參數(shù),屬于中檔題.7.D【解析】
根據(jù)拋物線的定義求得,由此求得的長(zhǎng).【詳解】過(guò)作,垂足為,設(shè)與軸的交點(diǎn)為.根據(jù)拋物線的定義可知.由于,所以,所以,所以,所以.故選:D【點(diǎn)睛】本小題主要考查拋物線的定義,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于基礎(chǔ)題.8.A【解析】
每個(gè)縣區(qū)至少派一位專家,基本事件總數(shù),甲,乙兩位專家派遣至同一縣區(qū)包含的基本事件個(gè)數(shù),由此能求出甲,乙兩位專家派遣至同一縣區(qū)的概率.【詳解】派四位專家對(duì)三個(gè)縣區(qū)進(jìn)行調(diào)研,每個(gè)縣區(qū)至少派一位專家基本事件總數(shù):甲,乙兩位專家派遣至同一縣區(qū)包含的基本事件個(gè)數(shù):甲,乙兩位專家派遣至同一縣區(qū)的概率為:本題正確選項(xiàng):【點(diǎn)睛】本題考查概率的求法,考查古典概型等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是基礎(chǔ)題.9.C【解析】
利用證得數(shù)列為常數(shù)列,并由此求得的通項(xiàng)公式.【詳解】由,得,可得().相減得,則(),又由,,得,所以,所以為常數(shù)列,所以,故.故選:C【點(diǎn)睛】本小題考查數(shù)列的通項(xiàng)與前項(xiàng)和的關(guān)系等基礎(chǔ)知識(shí);考查運(yùn)算求解能力,邏輯推理能力,應(yīng)用意識(shí).10.D【解析】
利用是偶函數(shù)化簡(jiǎn),結(jié)合在區(qū)間上的單調(diào)性,比較出三者的大小關(guān)系.【詳解】是偶函數(shù),,而,因?yàn)樵谏线f減,,即.故選:D【點(diǎn)睛】本小題主要考查利用函數(shù)的奇偶性和單調(diào)性比較大小,屬于基礎(chǔ)題.11.C【解析】
畫出不等式表示的平面區(qū)域,計(jì)算面積即可.【詳解】不等式表示的平面區(qū)域如圖:直線的斜率為,直線的斜率為,所以兩直線垂直,故為直角三角形,易得,,,,所以陰影部分面積.故選:C.【點(diǎn)睛】本題考查不等式組表示的平面區(qū)域面積的求法,考查數(shù)形結(jié)合思想和運(yùn)算能力,屬于??碱}.12.B【解析】
模擬程序運(yùn)行,觀察變量值可得結(jié)論.【詳解】循環(huán)前,循環(huán)時(shí):,不滿足條件;,不滿足條件;,不滿足條件;,不滿足條件;,不滿足條件;,滿足條件,退出循環(huán),輸出.故選:B.【點(diǎn)睛】本題考查程序框圖,考查循環(huán)結(jié)構(gòu),解題時(shí)可模擬程序運(yùn)行,觀察變量值,從而得出結(jié)論.二、填空題:本題共4小題,每小題5分,共20分。13.1【解析】
根據(jù)二項(xiàng)式定理求出,然后再由二項(xiàng)式定理或多項(xiàng)式的乘法法則結(jié)合組合的知識(shí)求得系數(shù).【詳解】由題意,.∴的展開式中的系數(shù)為.故答案為:1.【點(diǎn)睛】本題考查二項(xiàng)式定理,掌握二項(xiàng)式定理的應(yīng)用是解題關(guān)鍵.14.【解析】
先求得時(shí);再由可得時(shí),兩式作差可得,進(jìn)而求解.【詳解】當(dāng)時(shí),,解得;由,可知當(dāng)時(shí),,兩式相減,得,即,所以數(shù)列是首項(xiàng)為,公比為的等比數(shù)列,所以,故答案為:【點(diǎn)睛】本題考查由與的關(guān)系求通項(xiàng)公式,考查等比數(shù)列的通項(xiàng)公式的應(yīng)用.15.【解析】
由題意可得等腰三角形的兩條相等的邊,設(shè),由題可得的長(zhǎng),在三角形中,三角形中由余弦定理可得的值相等,可得的關(guān)系,從而求出橢圓的離心率【詳解】如圖,若為等腰三角形,則|BF1|=|AB|.設(shè)|BF2|=t,則|BF1|=2a?t,所以|AB|=a+t=|BF1|=2a?t,解得a=2t,即|AB|=|BF1|=3t,|AF1|=2t,設(shè)∠BAO=θ,則∠BAF1=2θ,所以Г的離心率e=,結(jié)合余弦定理,易得在中,,所以,即e==,故答案為:.【點(diǎn)睛】此題考查橢圓的定義及余弦定理的簡(jiǎn)單應(yīng)用,屬于中檔題.16.【解析】
先求導(dǎo),再根據(jù)導(dǎo)數(shù)的幾何意義,有求解.【詳解】因?yàn)楹瘮?shù),所以,所以,解得.故答案為:【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義,還考查運(yùn)算求解能力以及數(shù)形結(jié)合思想,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1)(2)為減函數(shù),為增函數(shù).(3)證明見解析【解析】
(1)求出導(dǎo)函數(shù),求出切線方程,令得切線的縱截距,可得(必須利用函數(shù)的單調(diào)性求解);(2)求函數(shù)的導(dǎo)數(shù),由導(dǎo)數(shù)的正負(fù)確定單調(diào)性;(3)不等式變形為,由遞減,得(),即,即,依次放縮,.不等式,遞增得(),,,,先證,然后同樣放縮得出結(jié)論.【詳解】解:(1)對(duì)求導(dǎo),得.因此.又因?yàn)椋郧€在點(diǎn)處的切線方程為,即.由題意,.顯然,適合上式.令,求導(dǎo)得,因此為增函數(shù):故是唯一解.(2)由(1)可知,,因?yàn)?,所以為減函數(shù).因?yàn)?,所以為增函?shù).(3)證明:由,易得.由(2)可知,在上為減函數(shù).因此,當(dāng)時(shí),,即.令,得,即.因此,當(dāng)時(shí),.所以成立.下面證明:.由(2)可知,在上為增函數(shù).因此,當(dāng)時(shí),,即.因此,即.令,得,即.當(dāng)時(shí),.因?yàn)椋?,所?所以,當(dāng)時(shí),.所以,當(dāng)時(shí),成立.綜上所述,當(dāng)時(shí),成立.【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義,考查用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查用導(dǎo)數(shù)證明不等式.本題中不等式的證明,考查了轉(zhuǎn)化與化歸的能力,把不等式變形后利用第(2)小題函數(shù)的單調(diào)性得出數(shù)列的不等關(guān)系:,.這是最關(guān)鍵的一步.然后一步一步放縮即可證明.本題屬于困難題.18.(1)見證明;(2)【解析】
(1)先證明等腰梯形中,然后證明,即可得到丄平面,從而可證明平面丄平面;(2)由,可得到,列出式子可求出,然后建立如圖的空間坐標(biāo)系,求出平面的法向量為,平面的法向量為,由可得到答案.【詳解】(1)證明:在等腰梯形,,易得在中,,則有,故,又平面,平面,,即平面,故平面丄平面.(2)在梯形中,設(shè),,,,而,即,.以點(diǎn)為坐標(biāo)原點(diǎn),所在直線為軸,所在直線為軸,所在直線為軸,建立如圖的空間坐標(biāo)系,則,,設(shè)平面的法向量為,由得,取,得,,同理可求得平面的法向量為,設(shè)二面角的平面角為,則,所以二面角的余弦值為.【點(diǎn)睛】本題考查了兩平面垂直的判定,考查了利用空間向量的方法求二面角,考查了棱錐的體積的計(jì)算,考查了空間想象能力及計(jì)算能力,屬于中檔題.19.【解析】
討論和的情況,然后再分對(duì)稱軸和區(qū)間之間的關(guān)系,最后求出最小值【詳解】當(dāng)時(shí),,它在上是減函數(shù)故函數(shù)的最小值為當(dāng)時(shí),函數(shù)的圖象思維對(duì)稱軸方程為當(dāng)時(shí),,函數(shù)的最小值為當(dāng)時(shí),,函數(shù)的最小值為當(dāng)時(shí),,函數(shù)的最小值為綜上,【點(diǎn)睛】本題主要考查了二次函數(shù)在閉區(qū)間上的最值,二次函數(shù)的性質(zhì)的應(yīng)用,體現(xiàn)了分類討論的數(shù)學(xué)思想,屬于中檔題。20.(1)(2)【解析】
(1)求曲線和曲線圍成的圖形面積,首先求出兩曲線交點(diǎn)的橫坐標(biāo)0、1,然后求在區(qū)間上的定積分.(2)首先利用二倍角公式及兩角差的余弦公式計(jì)算出,然后再整體代入可得;【詳解】解:(1)聯(lián)立解得,,所以曲線和曲線圍成的圖形面積.(2)∴【點(diǎn)睛】本題考查定積分求曲邊形的面積以及三角恒等變換的應(yīng)用,屬于中檔題.21.(1)(2)【解析】
(1)利用二倍角公式及三角形內(nèi)角和定理,將化簡(jiǎn)為,求出的值,結(jié)合,求出A的值;(2)寫出三角形的面積公式,由其最大值為求出.由余弦定理,結(jié)合,,求出的范圍,注意.進(jìn)而求出周長(zhǎng)的范圍.【詳解】解:(1)整理得解得或(舍去)又;(2)由題意知,又,,又周長(zhǎng)的取值范圍是【點(diǎn)睛】本題考查了二倍角余弦公式,三角形面積公式,余弦定理的應(yīng)用,求三角形的周長(zhǎng)的范圍問(wèn)題.屬于中檔題.22.(Ⅰ)和.;(Ⅱ)證明見解析;(Ⅲ).【解析】
(Ⅰ)由,可得,解出即可;(Ⅱ)設(shè)點(diǎn),設(shè)直線,與橢圓方程聯(lián)立可得:,利用,根與系數(shù)的關(guān)系、中點(diǎn)坐標(biāo)公式,證明即可;(Ⅲ)由(Ⅰ)知,曲線,且,設(shè)直線的方程為:,與橢圓方程聯(lián)立可得:,利用根與系數(shù)的關(guān)系、弦長(zhǎng)公式、三角形的面釈計(jì)算公式
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度智能交通系統(tǒng)建設(shè)合同4篇
- 2025年度產(chǎn)品上樣研發(fā)創(chuàng)新合作框架協(xié)議4篇
- 二零二四年專業(yè)調(diào)解離婚財(cái)產(chǎn)分配協(xié)議3篇
- 2025年度廠房租賃合同補(bǔ)充協(xié)議(含租賃物保險(xiǎn)及理賠)4篇
- 2025年度柴油產(chǎn)品售后服務(wù)協(xié)議3篇
- 女性職工知識(shí)培訓(xùn)課件
- 2024藝術(shù)品經(jīng)營(yíng)公司與藝術(shù)家前期藝術(shù)品交易合同
- 不動(dòng)產(chǎn)企業(yè)股權(quán)轉(zhuǎn)讓標(biāo)準(zhǔn)協(xié)議版B版
- 專業(yè)辦公設(shè)備配送及維護(hù)服務(wù)協(xié)議版A版
- 2024藥品、醫(yī)療器械質(zhì)量保證協(xié)議書
- 醫(yī)養(yǎng)康養(yǎng)園項(xiàng)目商業(yè)計(jì)劃書
- 《穿越迷宮》課件
- 《C語(yǔ)言從入門到精通》培訓(xùn)教程課件
- 2023年中國(guó)半導(dǎo)體行業(yè)薪酬及股權(quán)激勵(lì)白皮書
- 2024年Minitab全面培訓(xùn)教程
- 社區(qū)電動(dòng)車棚新(擴(kuò))建及修建充電車棚施工方案(純方案-)
- 項(xiàng)目推進(jìn)與成果交付情況總結(jié)與評(píng)估
- 鐵路項(xiàng)目征地拆遷工作體會(huì)課件
- 醫(yī)院死亡報(bào)告年終分析報(bào)告
- 建設(shè)用地報(bào)批服務(wù)投標(biāo)方案(技術(shù)方案)
- 工會(huì)工作人年度考核個(gè)人總結(jié)
評(píng)論
0/150
提交評(píng)論