![安徽省六安市第一中學2025屆高二上數(shù)學期末考試試題含解析_第1頁](http://file4.renrendoc.com/view12/M05/2E/03/wKhkGWcb46eADUzqAAHmogtf_Zs990.jpg)
![安徽省六安市第一中學2025屆高二上數(shù)學期末考試試題含解析_第2頁](http://file4.renrendoc.com/view12/M05/2E/03/wKhkGWcb46eADUzqAAHmogtf_Zs9902.jpg)
![安徽省六安市第一中學2025屆高二上數(shù)學期末考試試題含解析_第3頁](http://file4.renrendoc.com/view12/M05/2E/03/wKhkGWcb46eADUzqAAHmogtf_Zs9903.jpg)
![安徽省六安市第一中學2025屆高二上數(shù)學期末考試試題含解析_第4頁](http://file4.renrendoc.com/view12/M05/2E/03/wKhkGWcb46eADUzqAAHmogtf_Zs9904.jpg)
![安徽省六安市第一中學2025屆高二上數(shù)學期末考試試題含解析_第5頁](http://file4.renrendoc.com/view12/M05/2E/03/wKhkGWcb46eADUzqAAHmogtf_Zs9905.jpg)
版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
安徽省六安市第一中學2025屆高二上數(shù)學期末考試試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.數(shù)列的一個通項公式為()A. B.C. D.2.下列關于拋物線的圖象描述正確的是()A.開口向上,焦點為 B.開口向右,焦點為C.開口向上,焦點為 D.開口向右,焦點為3.下列說法正確的個數(shù)有()(?。┟}“若,則”的否命題為:“若,則”;(ⅱ)“,”的否定為“,使得”;(ⅲ)命題“若,則有實根”為真命題;(ⅳ)命題“若,則”的否命題為真命題;A.1個 B.2個C.3個 D.4個4.空氣質(zhì)量指數(shù)大小分為五級指數(shù)越大說明污染的情況越嚴重,對人體危害越大,指數(shù)范圍在:,,,,分別對應“優(yōu)”、“良”、“輕中度污染”、“中度重污染”、“重污染”五個等級,如圖是某市連續(xù)14天的空氣質(zhì)量指數(shù)趨勢圖,下面說法錯誤的是().A.這14天中有4天空氣質(zhì)量指數(shù)為“良”B.從2日到5日空氣質(zhì)量越來越差C.這14天中空氣質(zhì)量的中位數(shù)是103D.連續(xù)三天中空氣質(zhì)量指數(shù)方差最小是9日到11日5.圓與直線的位置關系為()A.相切 B.相離C.相交 D.無法確定6.函數(shù)的導函數(shù)的圖像如圖所示,則()A.為的極大值點B.為的極大值點C.為的極大值點D.為的極小值點7.已知等差數(shù)列{an}中,a4+a9=8,則S12=()A.96 B.48C.36 D.248.橢圓()的右頂點是拋物線的焦點,且短軸長為2,則該橢圓方程為()A. B.C. D.9.已知雙曲線的一個焦點到它的一條漸近線的距離為,則()A.5 B.25C. D.10.已知拋物線的焦點為,在拋物線上有一點,滿足,則的中點到軸的距離為()A. B.C. D.11.已知圓,直線,則直線l被圓C所截得的弦長的最小值為()A.2 B.3C.4 D.512.在等差數(shù)列中,,表示數(shù)列的前項和,則()A.43 B.44C.45 D.46二、填空題:本題共4小題,每小題5分,共20分。13.圓上的點到直線的距離的最大值為__________.14.若數(shù)列滿足,,則__________15.知函數(shù),若函數(shù)有兩個不同的零點,則實數(shù)的取值范圍為_____________.16.直線的傾斜角為_______________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的離心率為,且其左頂點到右焦點的距離為.(1)求橢圓的方程;(2)設點、在橢圓上,以線段為直徑的圓過原點,試問是否存在定點,使得到直線的距離為定值?若存在,請求出點坐標;若不存在,請說理由.18.(12分)設,為雙曲線:(,)的左、右頂點,直線過右焦點且與雙曲線的右支交于,兩點,當直線垂直于軸時,△為等腰直角三角形(1)求雙曲線的離心率;(2)若雙曲線左支上任意一點到右焦點點距離的最小值為3,①求雙曲線方程;②已知直線,分別交直線于,兩點,當直線傾斜角變化時,以為直徑的圓是否過軸上的定點,若過定點,求出定點的坐標;若不過定點,請說明理由19.(12分)如圖,矩形的兩個頂點位于x軸上,另兩個頂點位于拋物線在x軸上方的曲線上,求矩形面積最大時的邊長.20.(12分)已知圓與(1)過點作直線與圓相切,求的方程;(2)若圓與圓相交于、兩點,求的長21.(12分)在直角坐標系中,曲線C的參數(shù)方程為,(為參數(shù)),以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系.(1)寫出曲線C的極坐標方程;(2)已知直線與曲線C相交于A,B兩點,求.22.(10分)如圖,在三棱柱中,=2,且,⊥底面ABC.E為AB中點(1)求證:平面;(2)求平面與平面CEB夾角的余弦值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據(jù)規(guī)律,總結通項公式,即可得答案.【詳解】根據(jù)規(guī)律可知數(shù)列的前三項為,所以該數(shù)列一個通項公式為故選:A2、A【解析】把化成拋物線標準方程,依據(jù)拋物線幾何性質(zhì)看開口方向,求其焦點坐標即可解決.【詳解】,即.則,即故此拋物線開口向上,焦點為故選:A3、B【解析】根據(jù)四種命題的結構特征可判斷(?。áぃ┑恼`,根據(jù)全稱命題的否定形式可判斷(ⅱ)的正誤,根據(jù)判別式的正誤可判斷(ⅲ)的正誤.【詳解】命題“若,則”的否命題”為“若,則”,故(?。╁e誤.“,”的否定為“,使得”,故(ⅱ)正確,當時,,故有實根,故(ⅲ)正確,“若,則”的否命題為“若,則”,取,則,故命題若,則為假命題,故(ⅳ)錯誤.故選:B4、C【解析】根據(jù)題圖分析數(shù)據(jù),對選項逐一判斷【詳解】對于A,14天中有1,3,12,13共4日空氣質(zhì)量指數(shù)為“良”,故A正確對于B,從2日到5日空氣質(zhì)量指數(shù)越來越高,故空氣質(zhì)量越來越差,故B正確對于C,14個數(shù)據(jù)中位數(shù)為:,故C錯誤對于D,觀察折線圖可知D正確故選:C5、C【解析】先計算出直線恒過定點,而點在圓內(nèi),所以圓與直線相交.【詳解】直線可化為,所以恒過定點.把代入,有:,所以在圓內(nèi),所以圓與直線的位置關系為相交.故選:C6、A【解析】由導函數(shù)的圖像可得函數(shù)的單調(diào)區(qū)間,從而可求得函數(shù)的極值【詳解】由的圖像可知,在和上單調(diào)遞減,在和上單調(diào)遞增,所以為的極大值點,和為的極小值點,不是函數(shù)的極值點,故選:A7、B【解析】利用等差數(shù)列的性質(zhì)求解即可.【詳解】解:由等差數(shù)列的性質(zhì)得.故選:B8、A【解析】求得拋物線的焦點從而求得,再結合題意求得,即可寫出橢圓方程.【詳解】因為拋物線的焦點坐標為,故可得;又短軸長為2,故可得,即;故橢圓方程為:.故選:.9、B【解析】由漸近線方程得到,焦點坐標為,漸近線方程為:,利用點到直線距離公式即得解【詳解】由題意,雙曲線故焦點坐標為,漸近線方程為:焦點到它的一條漸近線的距離為:解得:故選:B10、A【解析】設點,利用拋物線的定義求出的值,可求得點的橫坐標,即可得解.【詳解】設點,易知拋物線的焦點為,由拋物線的定義可得,得,所以,點的橫坐標為,故點到軸的距離為.故選:A.11、C【解析】直線l過定點D(1,1),當時,弦長最短.【詳解】由,圓心,半徑,,由,故直線l過定點,∵,故D在圓C內(nèi)部,直線l始終與圓相交,當時,直線l被圓截得的弦長最短,,弦長=.故選:C.12、C【解析】根據(jù)等差數(shù)列的性質(zhì),求得,結合等差數(shù)列的求和公式,即可求解.【詳解】由等差數(shù)列中,滿足,根據(jù)等差數(shù)列的性質(zhì),可得,所以,則.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先求得圓心到直線的距離,結合圓上的點到直線的距離的最大值為,即可求解.【詳解】由題意,圓的圓心坐標為,半徑為,則圓心到直線的距離為,所以圓上的點到直線的距離的最大值為.故答案為:14、7【解析】根據(jù)遞推公式,依次求得值.【詳解】依題意,由,可知,故答案為:715、【解析】根據(jù)分段函數(shù)的性質(zhì),結合冪函數(shù)、一次函數(shù)的單調(diào)性判斷零點的分布,進而求m的范圍.【詳解】由解析式知:在上為增函數(shù)且,在上,時為單調(diào)函數(shù),時無零點,故要使有兩個不同的零點,即兩側(cè)各有一個零點,所以在上必遞減且,則,可得.故答案為:16、【解析】由直線的斜率為,得到,即可求解.【詳解】由題意,可知直線的斜率為,設直線的傾斜角為,則,解得,即換線的傾斜角為.【點睛】本題主要考查直線的傾斜角的求解問題,其中解答中熟記直線的傾斜角與斜率的關系,合理準確計算是解答的關鍵,著重考查了運算與求解能力,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)存在,.【解析】(1)由題設可知求出,再結合,從而可求出橢圓的方程,(2)①若直線與軸垂直,由對稱性可知,代入橢圓方程可求得結果,②若直線不與軸垂直,設直線的方程為,將直線方程與橢圓方程聯(lián)立方程組,消去,然后利用根與系數(shù)的關系,設,,再由條件,得,從而得,再利用點到直線的距離公式可求得結果【詳解】(1)由題設可知解得,,,所以橢圓的方程為:;(2)設,,①若直線與軸垂直,由對稱性可知,將點代入橢圓方程,解得,原點到該直線的距離;②若直線不與軸垂直,設直線的方程為,由消去得,則由條件,即,由韋達定理得,整理得,則原點到該直線的距離;故存在定點,使得到直線的距離為定值.18、(1);(2)①;②定點有兩個,【解析】(1)由雙曲線方程有、、,根據(jù)已知條件有,即可求離心率.(2)①由題設有,結合(1)求雙曲線參數(shù),寫出雙曲線方程即可;②由題設可設為,,,聯(lián)立雙曲線方程結合韋達定理求,,,,再由、的方程求,坐標,若在為直徑的圓上點,由結合向量垂直的坐標表示列方程,進而求出定點坐標.【小問1詳解】由題設,若,且,又△為等腰直角三角形,∴,即,則又,可得.【小問2詳解】由題設,,由(1)有,則,即,①由上可知:雙曲線方程為.②由①知:,且直線的斜率不為0,設為,,,聯(lián)立直線與雙曲線得:,∴,,則,∴,∴直線為;直線為;∴,,若在為直徑的圓上點,∴,且,∴,令,則,∴,即,∴或,即過定點.【點睛】關鍵點點睛:第二問的②,設直線為,聯(lián)立直線與雙曲線,應用韋達定理求,,,,進而根據(jù)、的方程求,坐標,再由圓的性質(zhì)及向量垂直的坐標表示求定點坐標.19、當矩形面積最大時,矩形邊AB長,BC長【解析】先設出點坐標,進而表示出矩形的面積,通過求導可求出其最大面積.【詳解】設點,那么矩形面積,.令解得(負舍).所以S在(0,)上單調(diào)遞增,在(,2)上單調(diào)遞;..所以當時,S有最大值.此時答:當矩形面積最大時,矩形邊AB長,BC長.20、(1)或(2)【解析】(1)根據(jù)已知可得圓心與半徑,再利用幾何法可得切線方程;(2)聯(lián)立兩圓方程可得公共弦方程,進而可得弦長.【小問1詳解】解:圓的方程可化為:,即:圓的圓心為,半徑為若直線的斜率不存在,方程為:,與圓相切,滿足條件若直線的斜率存在,設斜率為,方程為:,即:由與圓相切可得:,解得:所以的方程為:,即:綜上可得的方程為:或【小問2詳解】聯(lián)立兩圓方程得:,消去二次項得所在直線的方程:,圓的圓心到的距離,所以.21、(1);(2).【解析】(1)首先將圓的參數(shù)方程華為普通方程,再轉(zhuǎn)化為極坐標方程即可.(2)首先聯(lián)立得到,再求的長度即可.【詳解】(1)將曲線C的參數(shù)方程,(為參數(shù))化為普通方程,得,極坐標方程為.(2)聯(lián)立方程組,消去得,設點A,B對應的極徑分別為,,則,,所以.22、(1)證明見解析;(2).【解析
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度合作建房項目竣工驗收合同范本
- 2025年度建筑涂料工程招投標代理與咨詢服務合同
- 2025年度智能家電研發(fā)生產(chǎn)合同協(xié)議書標準格式
- 貴州2025年貴州省市場監(jiān)管局所屬事業(yè)單位招聘39人筆試歷年參考題庫附帶答案詳解
- 蚌埠2025年安徽馬鞍山和縣中學招聘勞務派遣制教師筆試歷年參考題庫附帶答案詳解
- 牡丹江2024年黑龍江牡丹江市直事業(yè)單位集中選調(diào)15人筆試歷年參考題庫附帶答案詳解
- 淮安2024年江蘇淮安市公安局經(jīng)濟技術開發(fā)區(qū)分局招聘警務輔助人員15人筆試歷年參考題庫附帶答案詳解
- 沈陽2025年遼寧沈陽市渾南區(qū)事業(yè)單位博士招聘36人筆試歷年參考題庫附帶答案詳解
- 柳州2025年廣西柳州市事業(yè)單位招聘2077人筆試歷年參考題庫附帶答案詳解
- 昆明2025年云南昆明市晉寧區(qū)人民政府辦公室招聘編外工作人員筆試歷年參考題庫附帶答案詳解
- GB/T 26189.2-2024工作場所照明第2部分:室外作業(yè)場所的安全保障照明要求
- 新教科版一年級科學下冊第一單元《身邊的物體》全部課件(共7課時)
- 2025年中國水解聚馬來酸酐市場調(diào)查研究報告
- 高考百日誓師動員大會
- 2025江蘇常州西太湖科技產(chǎn)業(yè)園管委會事業(yè)單位招聘8人歷年高頻重點提升(共500題)附帶答案詳解
- 2025年北京控股集團有限公司招聘筆試參考題庫含答案解析
- 2024年北京東城社區(qū)工作者招聘筆試真題
- 2024新人教版初中英語單詞表默寫版(七~九年級)
- 體育科學急救知識
- 復工復產(chǎn)質(zhì)量管理工作
- 2025年東方電氣集團東方鍋爐股份限公司校園招聘高頻重點提升(共500題)附帶答案詳解
評論
0/150
提交評論