下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
PAGE簡單幾何體的表面積與體積1.柱、錐、臺和球的側面積和體積面積體積圓柱S側=2πrhV=Sh=πr2h圓錐S側=πrlV=eq\f(1,3)Sh=eq\f(1,3)πr2h=eq\f(1,3)πr2eq\r(l2-r2)圓臺S側=π(r1+r2)lV=eq\f(1,3)(S上+S下+eq\r(S上S下))h=eq\f(1,3)π(req\o\al(2,1)+req\o\al(2,2)+r1r2)h直棱柱S側=ChV=Sh正棱錐S側=eq\f(1,2)Ch′V=eq\f(1,3)Sh正棱臺S側=eq\f(1,2)(C+C′)h′V=eq\f(1,3)(S上+S下+eq\r(S上S下))h球S球面=4πR2V=eq\f(4,3)πR32.幾何體的表面積(1)棱柱、棱錐、棱臺的表面積就是各面面積之和.(2)圓柱、圓錐、圓臺的側面展開圖分別是矩形、扇形、扇環(huán)形;它們的表面積等于側面積與底面面積之和.[難點正本疑點清源]1.幾何體的側面積和全面積幾何體的側面積是指(各個)側面面積之和,而全面積是側面積與所有底面積之和.對側面積公式的記憶,最好結合幾何體的側面展開圖來進行.要特別留意根據幾何體側面展開圖的平面圖形的特點來求解相關問題.如直棱柱(圓柱)側面展開圖是一矩形,則可用矩形面積公式求解.再如圓錐側面展開圖為扇形,此扇形的特點是半徑為圓錐的母線長,圓弧長等于底面的周長,利用這一點可以求出展開圖扇形的圓心角的大?。?.等積法等積法包括等面積法和等體積法.等積法的前提是幾何圖形(或幾何體)的面積(或體積)通過已知條件可以得到,利用等積法可以用來求解幾何圖形的高或幾何體的高,特別是在求三角形的高和三棱錐的高,這一方法回避了具體通過作圖得到三角形(或三棱錐)的高,而通過直接計算得到高的數值.1.圓柱的一個底面積為S,側面展開圖是一個正方形,那么這個圓柱的側面積是________.2.設某幾何體的三視圖如下(尺寸的長度單位為m).則該幾何體的體積為________m3。3.表面積為3π的圓錐,它的側面展開圖是一個半圓,則該圓錐的底面直徑為________.4.一個球與一個正方體的各個面均相切,正方體的邊長為a,則球的表面積為________.5。如圖所示,在棱長為4的正方體ABCD—A1B1C1D1中,P是A1B1且PB1=eq\f(1,4)A1B1,則多面體P—BB1C1C的體積為________.題型一簡單幾何體的表面積例1一個空間幾何體的三視圖如圖所示,則該幾何體的表面積為 ()A.48 B.32+8eq\r(17)C.48+8eq\r(17) D.80思維啟迪:先通過三視圖確定空間幾何體的結構特征,然后再求表面積.探究提高(1)以三視圖為載體考查幾何體的表面積,關鍵是能夠對給出的三視圖進行恰當的分析,從三視圖中發(fā)現(xiàn)幾何體中各元素間的位置關系及數量關系.(2)多面體的表面積是各個面的面積之和;組合體的表面積應注意重合部分的處理.(3)圓柱、圓錐、圓臺的側面是曲面,計算側面積時需要將這個曲面展為平面圖形計算,而表面積是側面積與底面圓的面積之和.一個幾何體的三視圖(單位:cm)如圖所示,則該幾何體的表面積是________cm2。題型二簡單幾何體的體積例2如圖所示,已知E、F分別是棱長為a的正方體ABCD—A1B1C1D1的棱A1A、CC1的中點,求四棱錐C1-B的體積.思維啟迪:思路一:先求出四棱錐C1—B1EDF的高及其底面積,再利用棱錐的體積公式求出其體積;思路二:先將四棱錐C1—B1EDF化為兩個三棱錐B1—C1EF與D-C1EF,再求四棱錐C1—B1EDF的體積.解方法一連接A1C1,B1D1交于點O1,連接B1D,EF,過O1作O1H⊥B1D于H.∵EF∥A1C1,且A1C1平面B1EDF,∴A1C1∥平面∴C1到平面B1EDF的距離就是A1C1到平面B1EDF∵平面B1D1D⊥平面B1EDF,平面B1D1D∩平面B1EDF=B1D,∴O1H⊥平面B1EDF,即O1H為棱錐的高.∵△B1O1H∽△B1DD1,∴O1H=eq\f(B1O1·DD1,B1D)=eq\f(\r(6),6)a.∴VC1—B1EDF=eq\f(1,3)S四邊形B1EDF·O1H=eq\f(1,3)·eq\f(1,2)·EF·B1D·O1H=eq\f(1,3)·eq\f(1,2)·eq\r(2)a·eq\r(3)a·eq\f(\r(6),6)a=eq\f(1,6)a3。方法二連接EF,B1D.設B1到平面C1EF的距離為h1,D到平面C1EF的距離為h2,則h1+h2=B1D1=eq\r(2)a.由題意得,VC1—B1EDF=VB1—C1EF+VD—C1EF=eq\f(1,3)·S△C1EF·(h1+h2)=eq\f(1,6)a3.探究提高在求解一些不規(guī)則的幾何體的體積以及兩個幾何體的體積之比時,常常需要用到分割法.在求一個幾何體被分成兩部分的體積之比時,若有一部分為不規(guī)則幾何體,則可用整個幾何體的體積減去規(guī)則幾何體的體積求出其體積.已知三棱錐S-ABC的所有頂點都在球O的球面上,△ABC是邊長為1的正三角形,SC為球O的直徑,且SC=2,則此棱錐的體積為()A。eq\f(\r(2),6) B.eq\f(\r(3),6) C。eq\f(\r(2),3) D.eq\f(\r(2),2)題型三幾何體的展開與折疊問題例3(1)如圖所示,在邊長為4的正方形紙片ABCD中,AC與BD相交于O,剪去△AOB,將剩余部分沿OC、OD折疊,使OA、OB重合,則以A、B、C、D、O為頂點的四面體的體積為________.(2)有一根長為3πcm,底面直徑為2cm的圓柱形鐵管,用一段鐵絲在鐵管上纏繞2圈,并使鐵絲的兩個端點落在圓柱的同一母線的兩端,則鐵絲的最短長度為________cm。思維啟迪:(1)考慮折疊后所得幾何體的形狀及數量關系;(2)可利用圓柱的側面展開圖.(2)研究幾何體表面上兩點的最短距離問題,常選擇恰當的母線或棱展開,轉化為平面上兩點間的最短距離問題.如圖,已知一個多面體的平面展開圖由一邊長為1的正方形和4個邊長為1的正三角形組成,則該多面體的體積是_______..方法與技巧1.對于基本概念和能用公式直接求出棱柱、棱錐、棱臺與球的表面積的問題,要結合它們的結構特點與平面幾何知識來解決.2.要注意將空間問題轉化為平面問題.3.求幾何體的體積,要注意分割與補形.將不規(guī)則的幾何體通過分割或補形將其轉化為規(guī)則的幾何體求解.4.一些幾何體表面上的最短距離問題,常常利用幾何體的展開圖解決.A組專項基礎訓練(時間:35分鐘,滿分:57分)一、選擇題(每小題5分,共20分)1.如圖,網格紙上小正方形的邊長為1,粗線畫出的是某幾何體的三視圖,則此幾何體的體積為 ()A.6 B.9 C.12 2。已知高為3的直棱柱ABC—A′B′C′的底面是邊長為1的正三角形(如右圖所示),則三棱錐B′—ABC的體積為()A.eq\f(1,4) B.eq\f(1,2) C。eq\f(\r(3),6) D.eq\f(\r(3),4)3.正六棱柱的高為6,底面邊長為4,則它的全面積為 ()A.48(3+eq\r(3)) B.48(3+2eq\r(3))C.24(eq\r(6)+eq\r(2)) D.1444.某三棱錐的三視圖如圖所示,該三棱錐的表面積是 ()A.28+6eq\r(5) B.30+6eq\r(5)C.56+12eq\r(5) D.60+12eq\r(5)二、填空題(每小題5分,共15分)5.如圖,正方體ABCD-A1B1C1D1的棱長為1,E,F(xiàn)分別為線段AA1,B1C上的點,則三棱錐D1-6.一個幾何體的三視圖如圖所示(單位:m),則該幾何體的體積為________m3。7.已知三棱錐A—BCD的所有棱長都為eq\r(2),則該三棱錐的外接球的表面積為________.三、解答題(共22分)8.(10分)如圖所示,在邊長為5+eq\r(2)的正方形ABCD中,以A為圓心畫一個扇形,以O為圓心畫一個圓,M,N,K為切點,以扇形為圓錐的側面,以圓O為圓錐底面,圍成一個圓錐,求圓錐的全面積與體積.9.(12分)有一個倒圓錐形容器,它的軸截面是一個正三角形,在容器內放一個半徑為r的鐵球,并注入水,使水面與球正好相切,然后將球取出,求這時容器中水的深度.B組專項能力提升(時間:25分鐘,滿分:43分)一、選擇題(每小題5分,共15分)1.某幾何體的三視圖如圖所示,其中俯視圖是個半圓,則該幾何體的表面積為()A.eq\f(3,2)π B.π+eq\r(3) C。eq\f(3,2)π+eq\r(3) D.eq\f(5,2)π+eq\r(3)2.在四棱錐E—ABCD中,底面ABCD為梯形,AB∥CD,2AB=3CD,M為AE的中點,設E—ABCD的體積為V,那么三棱錐M—EBC的體積為 ()A。eq\f(2,5)V B.eq\f(1,3)V C。eq\f(2,3)V D。eq\f(3,10)V3.已知球的直徑SC=4,A、B是該球球面上的兩點,AB=eq\r(3),∠ASC=∠BSC=30°,則棱錐S-ABC的體積為 ()A.3eq\r(3) B.2eq\r(3) C。eq\r(3) D.1二、填空題(每小題5分,共15分)4.如圖,已知正三棱柱ABC—A1B1C1的底面邊長為2cm,高為5cm一質點自點A出發(fā),沿著三棱柱的側面繞行兩周到達點A1的最短路線的長為______cm。5.已知一個幾何體是由上、下兩部分構成的組合體,其三視圖如圖所示,若圖中圓的半徑為1,等腰三角形的腰長為eq\r(5),則該幾何體的體積是________.6.如圖,A
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度新能源車輛贈予及充電設施安裝合同3篇
- 中國石化2024年度原料進口協(xié)議模板版
- 2025年智能工廠車間場地租賃及維護服務合同范本4篇
- 二零二五年院落出租與非物質文化遺產保護合同3篇
- 2025版智能門面房租賃服務合作協(xié)議4篇
- 2025版海外院校代理傭金合同標準范本4篇
- 二零二五版高速公路監(jiān)控系統(tǒng)光纜安裝合同3篇
- 2025年項目經理入職及項目團隊激勵方案合同3篇
- 現(xiàn)代醫(yī)療技術下的疾病預防策略
- 二零二五版美團騎手薪酬福利及晉升體系合同4篇
- 【采購管理優(yōu)化探究文獻綜述3000字】
- 《大學生職業(yè)發(fā)展與就業(yè)指導》課程標準
- 第23課《出師表》課件(共56張)
- GB/T 3953-2024電工圓銅線
- 發(fā)電機停電故障應急預案
- 接電的施工方案
- 幼兒阿拉伯數字描紅(0-100)打印版
- 社會組織等級評估報告模板
- GB/T 12173-2008礦用一般型電氣設備
- 新媒體研究方法教學ppt課件(完整版)
- 2020新版?zhèn)€人征信報告模板
評論
0/150
提交評論