2025屆廣東省廣州市天河區(qū)高二上數(shù)學期末學業(yè)水平測試模擬試題含解析_第1頁
2025屆廣東省廣州市天河區(qū)高二上數(shù)學期末學業(yè)水平測試模擬試題含解析_第2頁
2025屆廣東省廣州市天河區(qū)高二上數(shù)學期末學業(yè)水平測試模擬試題含解析_第3頁
2025屆廣東省廣州市天河區(qū)高二上數(shù)學期末學業(yè)水平測試模擬試題含解析_第4頁
2025屆廣東省廣州市天河區(qū)高二上數(shù)學期末學業(yè)水平測試模擬試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆廣東省廣州市天河區(qū)高二上數(shù)學期末學業(yè)水平測試模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在空間直角坐標系中,,,平面的一個法向量為,則平面與平面夾角的正弦值為()A. B.C. D.2.某中學的校友會為感謝學校的教育之恩,準備在學校修建一座四角攢尖的思源亭如圖它的上半部分的輪廓可近似看作一個正四棱錐,已知此正四棱錐的側面與底面所成的二面角為30°,側棱長為米,則以下說法不正確()A.底面邊長為6米 B.體積為立方米C.側面積為平方米 D.側棱與底面所成角的正弦值為3.現(xiàn)有60瓶飲料,編號從1到60,若用系統(tǒng)抽樣的方法從中抽取6瓶進行檢驗,則所抽取的編號可能為()A.3,13,23,33,43,53 B.2,14,26,38,40,52C.5,8,31,36,48,54 D.5,10,15,20,25,304.已知橢圓方程為,點在橢圓上,右焦點為F,過原點的直線與橢圓交于A,B兩點,若,則橢圓的方程為()A. B.C. D.5.我國古代數(shù)學典籍《四元玉鑒》中有如下一段話:“河有汛,預差夫一千八百八十人筑堤,只云初日差六十五人,次日轉多七人,今有三日連差三百人,問已差人幾天,差人幾何?”其大意為“官府陸續(xù)派遣1880人前往修筑堤壩,第一天派出65人,從第二天開始每天派出的人數(shù)比前一天多7人.已知最后三天一共派出了300人,則目前一共派出了多少天,派出了多少人?”()A.6天495人 B.7天602人C.8天716人 D.9天795人6.在空間直角坐標系中,已知點,,則線段的中點坐標與向量的模長分別是()A.;5 B.;C.; D.;7.過橢圓右焦點作x軸的垂線,并交C于A,B兩點,直線l過C的左焦點和上頂點.若以線段AB為直徑的圓與有2個公共點,則C的離心率e的取值范圍是()A. B.C. D.8.直線l:的傾斜角為()A. B.C. D.9.已知橢圓C:的左右焦點為F1,F2離心率為,過F2的直線l交C與A,B兩點,若△AF1B的周長為,則C的方程為A. B.C. D.10.下列四個命題中,為真命題的是()A.若a>b,則ac2>bc2B.若a>b,c>d,則a﹣c>b﹣dC.若a>|b|,則a2>b2D.若a>b,則11.從直線上動點作圓的兩條切線,切點分別為、,則最大時,四邊形(為坐標原點)面積是()A. B.C. D.12.拋物線有一條重要的性質:平行于拋物線的軸的光線,經過拋物線上的一點反射后經過它的焦點.反之,從焦點發(fā)出的光線,經過拋物線上的一點反射后,反射光線平行于拋物線的軸.已知拋物線,從點發(fā)出一條平行于x軸的光線,經過拋物線兩次反射后,穿過點,則光線從A出發(fā)到達B所走過的路程為()A.8 B.10C.12 D.14二、填空題:本題共4小題,每小題5分,共20分。13.某班有位同學,將他們從至編號,現(xiàn)用系統(tǒng)抽樣的方法從中選取人參加文藝演出,抽出的編號從小到大依次排列,若排在第一位的編號是,那么第四位的編號是______14.已知函數(shù),設,且函數(shù)有3個不同的零點,則實數(shù)k的取值范圍為___________.15.若不同的平面的一個法向量分別為,,則與的位置關系為___________.16.已知球的表面積是,則該球的體積為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線C:()的焦點為F,原點O關于點F的對稱點為Q,點關于點Q的對稱點,也在拋物線C上(1)求p的值;(2)設直線l交拋物線C于不同兩點A、B,直線、與拋物線C的另一個交點分別為M、N,,,且,求直線l的橫截距的最大值.18.(12分)已知函數(shù).(1)當時,討論的單調性;(2)當時,證明:.19.(12分)大學生王蕾利用暑假參加社會實踐,對機械銷售公司月份至月份銷售某種機械配件的銷售量及銷售單價進行了調查,銷售單價和銷售量之間的一組數(shù)據(jù)如表所示:月份銷售單價(元)銷售量(件)(1)根據(jù)至月份數(shù)據(jù),求出關于的回歸直線方程;(2)若剩下的月份的數(shù)據(jù)為檢驗數(shù)據(jù),并規(guī)定由回歸直線方程得到的估計數(shù)據(jù)與檢驗數(shù)據(jù)的誤差不超過元,則認為所得到的回歸直線方程是理想的,試問(1)中所得到的回歸直線方程是否理想?(注:,,參考數(shù)據(jù):,)20.(12分)已知橢圓的離心率為,且過點.(1)求橢圓的方程;(2)若,分別為橢圓的上,下頂點,過點且斜率為的直線交橢圓于另一點(異于橢圓的右頂點),交軸于點,直線與直線相交于點.求證:直線的斜率為定值.21.(12分)曲線與曲線在第一象限的交點為.曲線是()和()組成的封閉圖形.曲線與軸的左交點為、右交點為.(1)設曲線與曲線具有相同的一個焦點,求線段的方程;(2)在(1)的條件下,曲線上存在多少個點,使得,請說明理由.(3)設過原點的直線與以為圓心的圓相切,其中圓的半徑小于1,切點為.直線與曲線在第一象限的兩個交點為..當對任意直線恒成立,求的值.22.(10分)如圖,在四棱錐S-ABCD中,SA⊥底面ABCD,底面ABCD是梯形,其中,且.(1)求四棱錐S-ABCD的側面積;(2)求平面SCD與平面SAB的夾角的余弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據(jù)給定條件求出平面的法向量,再借助空間向量夾角公式即可計算作答.【詳解】設平面的法向量為,則,令,得,令平面與平面夾角為,則,,所以平面與平面夾角的正弦值為.故選:A2、D【解析】連接底面正方形的對角線交于點,連接,則為該正四棱錐的高,即平面,取的中點,連接,則的大小為側面與底面所成,設正方形的邊長為,求出該正四棱錐的底面邊長,斜高和高,然后對選項進行逐一判斷即可.【詳解】連接底面正方形的對角線交于點,連接則為該正四棱錐的高,即平面取的中點,連接,由正四棱錐的性質,可得由分別為的中點,所以,則所以為二面角的平面角,由條件可得設正方形的邊長為,則,又則,解得故選項A正確.所以,則該正四棱錐的體積為,故選項B正確.該正四棱錐的側面積為,故選項C正確.由題意為側棱與底面所成角,則,故選項D不正確.故選:D3、A【解析】求得組距,由此確定正確選項.【詳解】,即組距為,A選項符合,其它選項不符合.故選:A4、A【解析】根據(jù)橢圓的性質可得,則橢圓方程可求.【詳解】由點在橢圓上得,由橢圓的對稱性可得,則,故橢圓方程為.故選:A.5、B【解析】根據(jù)題意,設每天派出的人數(shù)組成數(shù)列,可得數(shù)列是首項,公差數(shù)7的等差數(shù)列,解方程可得所求值【詳解】解:設第天派出的人數(shù)為,則是以65為首項、7為公差的等差數(shù)列,且,,∴,,∴天則目前派出的人數(shù)為人,故選:B6、B【解析】根據(jù)給定條件利用中點坐標公式及空間向量模長的坐標表示計算作答.【詳解】因點,,所以線段的中點坐標為,.故選:B7、A【解析】求得以為直徑的圓的圓心和半徑,求得直線的方程,利用圓心到直線的距離小于半徑列不等式,化簡后求得橢圓離心率的取值范圍.【詳解】橢圓的左焦點,右焦點,上頂點,,所以為直徑的圓的圓心為,半徑為.直線的方程為,由于以線段為直徑的圓與相交,所以,,,,,所以橢圓的離心率的取值范圍是.故選:A8、D【解析】先求得直線的斜率,由此求得傾斜角.【詳解】依題意,直線的斜率為,傾斜角的范圍為,則傾斜角為.故選:D.9、A【解析】若△AF1B的周長為4,由橢圓的定義可知,,,,,所以方程為,故選A.考點:橢圓方程及性質10、C【解析】利用不等式的性質結合特殊值法依次判斷即可【詳解】當c=0時,A不成立;2>1,3>-1,而2-3<1-(-1),故B不成立;a=2,b=1時,,D不成立;由a>|b|知a>0,所以a2>b2,C正確故選:C11、B【解析】分析可知當時,最大,計算出、,進而可計算得出四邊形(為坐標原點)面積.【詳解】圓的圓心為坐標原點,連接、、,則,設,則,,則,當取最小值時,,此時,,,,故,此時,.故選:B.12、C【解析】利用拋物線的定義求解.【詳解】如圖所示:焦點為,設光線第一次交拋物線于點,第二次交拋物線于點,過焦點F,準線方程為:,作垂直于準線于點,作垂直于準線于點,則,,,,故選:C二、填空題:本題共4小題,每小題5分,共20分。13、29【解析】根據(jù)給定信息利用系統(tǒng)抽樣的特征直接計算作答.【詳解】因系統(tǒng)抽樣是等距離抽樣,依題意,相鄰兩個編號相距,所以第四位的編號是.故答案為:2914、【解析】由題意畫出函數(shù)圖象,把函數(shù)有3個不同的零點的問題轉化為函數(shù)與函數(shù)有3個交點的問題,分為和時分類討論即可.【詳解】作出函數(shù)的圖象如下圖所示,要使函數(shù)有3個不同的零點,則函數(shù)和函數(shù)有三個交點,由已知得函數(shù)恒過點,當時,過點時,函數(shù)和函數(shù)有三個交點,將代入得,即,當時,與相切時,此時函數(shù)和函數(shù)有兩個交點,如圖所示,,設此時的切點為,則直線的斜率為,直線的方程為,將點代入得,解得,此時的斜率為,將逆時針旋轉至和平行時,即為的位置時,函數(shù)和函數(shù)有三個交點,此時,故的范圍為,綜上所述實數(shù)k的取值范圍為.故答案為:.15、平行【解析】根據(jù)題意得到,得出,即可得到平面與的位置關系.【詳解】由題意,平面的一個法向量分別為,,可得,所以,所以,即平面與的位置關系為平行.故答案為:平行16、【解析】設球的半徑為r,代入表面積公式,可解得,代入體積公式,即可得答案.【詳解】設球的半徑為r,則表面積,解得,所以體積,故答案為:【點睛】本題考查已知球的表面積求體積,關鍵是求出半徑,再進行求解,考查基礎知識掌握程度,屬基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)最大橫截距為.【解析】(1)首先寫出的坐標,根據(jù)對稱關系求出的坐標,帶入即可求出.(2)設直線l的方程為,帶入拋物線方程利用韋達定理,計算出直線l的橫截距的表達式從而求出其最大值.【詳解】(1)由題知,,故,代入C的方程得,∴;(2)設直線l的方程為,與拋物線C:聯(lián)立得,由題知,可設方程兩根為,,則,,(*)由得,∴,,又點M在拋物線C上,∴,化簡得,由題知M,A為不同兩點,故,,即,同理可得,∴,將(*)式代入得,即,將其代入解得,∴在時取得最大值,即直線l的最大橫截距為.18、(1)在上單調遞減,在上單調遞增(2)證明見解析【解析】(1)當時,利用求得的單調區(qū)間.(2)將問題轉化為證明,利用導數(shù)求得的最小值大于零,從而證得不等式成立.【小問1詳解】當時,,且,又與均在上單調遞增,所以在上單調遞增.當時,單調遞減;當時,單調遞增綜上,在上單調遞減,在上單調遞增.【小問2詳解】因為,所以,要證,只需證當時,即可.,易知在上單調遞增,又,所以,且,即,當時,單調遞減;當時,單調遞增,,所以.【點睛】在證明不等式的過程中,直接證明困難時,可考慮證明和兩個不等式成立,從而證得成立.19、(1)(2)回歸直線方程是理想的【解析】(1)根據(jù)表格數(shù)據(jù)求得,利用最小二乘法可求得回歸直線方程;(2)令回歸直線中的可求得估計數(shù)據(jù),對比檢驗數(shù)據(jù)即可確定結論.小問1詳解】由表格數(shù)據(jù)可知:,,,則,關于的回歸直線方程為;【小問2詳解】令回歸直線中的,則,,(1)中所得到的回歸直線方程是理想的.20、(1);(2)證明見解析.【解析】(1)根據(jù)條件求出,即可寫出橢圓方程;(2)設直線的方程為,聯(lián)立直線與橢圓,可表示出坐標,繼而得出直線的方程,令可得的坐標,即可求出直線的斜率并得出定值.【詳解】(1)設橢圓的焦距為,則①,②,又③,由①②③解得,,,所以橢圓的標準方程為.(2)證明:易得,,直線的方程為,因為直線不過點,所以,由,得,所以,從而,,直線的斜率為,故直線的方程為.令,得,直線斜率.所以直線的斜率為定值.【點睛】本題考查橢圓的方程的求法,考查橢圓中的定值問題,屬于中檔題.21、(1)或;(2)一共2個,理由見解析;(3)答案見解析.【解析】(1)先求曲線的焦點,再求點的坐標,分焦點為左焦點或右焦點,求線段的方程;(2)分點在雙曲線或是橢圓的曲線上,結合條件,說明點的個數(shù);(3)首先設出直線和圓的方程,利用直線與圓相切,以及直線與曲線相交,分別表示,并計算得到的值.【詳解】(1)兩個曲線相同的焦點,,解得:,即雙曲線方程是,橢圓方程是,焦點坐標是,聯(lián)立兩個曲線,得,,即,當焦點是右焦點時,線段的方程當焦點時左焦點時,,,線段的方程(2),假設點在曲線上單調遞增∴所以點不可能在曲線上所以點只可能在曲線上,根據(jù)得可以得到當左焦點,,同樣這樣的使得不存在所以這樣的點一共2個(3)設直線方程,圓方程為直線與圓相切,所以,,根據(jù)得到補充說明:由于直線的曲線有兩個交點,受參數(shù)的影響,蘊含著如下關系,∵,當,存在,否則不存在這里可以不需討論,因為題目前假定直線與曲線有兩個交點的大前提,當共焦點時存

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論