版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
山西省朔州市應(yīng)縣第一中學(xué)2025屆數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,棱長為1的正方體中,為線段上的動點,則下列結(jié)論錯誤的是A.B.平面平面C.的最大值為D.的最小值為2.設(shè),,,…,,,則()A. B.C. D.3.1202年,意大利數(shù)學(xué)家斐波那契出版了他的《算盤全書》.他在書中收錄了一些有意思的問題,其中有一個關(guān)于兔子繁殖的問題:如果1對兔子每月生1對小兔子(一雌一雄),而每1對小兔子出生后的第3個月里,又能生1對小兔子,假定在不發(fā)生死亡的情況下,如果用Fn表示第n個月的兔子的總對數(shù),則有(n>2),.設(shè)數(shù)列{an}滿足:an=,則數(shù)列{an}的前36項和為()A.11 B.12C.13 D.184.過坐標(biāo)原點作直線的垂線,垂足為,則的取值范圍是()A. B.C. D.5.2021年是中國共產(chǎn)黨百年華誕,3月24日,中宣部發(fā)布中國共產(chǎn)黨成立100周年慶?;顒訕?biāo)識(如圖1).其中“100”的兩個“0”設(shè)計為兩個半徑為R的相交大圓,分別內(nèi)含一個半徑為r的同心小圓,且同心小圓均與另一個大圓外切(如圖2).已知,則由其中一個圓心向另一個小圓引的切線長與兩大圓的公共弦長之比為()A. B.3C. D.6.過圓外一點引圓的兩條切線,則經(jīng)過兩切點的直線方程是A. B.C. D.7.若,則下列等式一定成立的是()A. B.C. D.8.若點是函數(shù)圖象上的動點(其中的自然對數(shù)的底數(shù)),則到直線的距離最小值為()A. B.C. D.9.已知橢圓C:()的長軸的長為4,焦距為2,則C的方程為()A B.C. D.10.已知的二項展開式的各項系數(shù)和為32,則二項展開式中的系數(shù)為A5 B.10C.20 D.4011.①命題設(shè)“,若,則或”;②若“”為真命題,則p,q均為真命題;③“”是函數(shù)為偶函數(shù)的必要不充分條件;④若為空間的一個基底,則構(gòu)成空間的另一基底;其中正確判斷的個數(shù)是()A.1 B.2C.3 D.412.瑞士數(shù)學(xué)家歐拉1765年在其所著的《三角形的幾何學(xué)》一書中提出:任意三角形的外心、重心、垂心在同一條直線上,后人稱這條直線為歐拉線.已知的頂點,,其歐拉線方程為,則頂點的坐標(biāo)可以是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)的圖像在點處的切線方程是,則=______14.求值______.15.曲線在處的切線方程是________.16.在空間直角坐標(biāo)系中,若三點、、滿足,則實數(shù)的值為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在復(fù)數(shù)集C內(nèi)方程有六個根分別為(1)解出這六個根;(2)在復(fù)平面內(nèi),這六個根對應(yīng)的點分別為A,B,C,D,E,F(xiàn);求多邊形ABCDEF的面積18.(12分)已知直線與圓.(1)當(dāng)直線l恰好平分圓C的周長時,求m的值;(2)當(dāng)直線l被圓C截得的弦長為時,求m的值.19.(12分)已知等差數(shù)列滿足;正項等比數(shù)列滿足,,(1)求數(shù)列,的通項公式;(2)數(shù)列滿足,的前n項和為,求的最大值.20.(12分)中心在原點,焦點在x軸上的一橢圓與一雙曲線有共同的焦點F1,F(xiàn)2,且|F1F2|=,橢圓的長半軸長與雙曲線半實軸長之差為4,離心率之比為3∶7(1)求這兩曲線方程;(2)若P為這兩曲線的一個交點,求△F1PF2的面積21.(12分)已知滿足,.(1)求證:是等差數(shù)列,求的通項公式;(2)若,的前項和是,求證:.22.(10分)設(shè)是首項為的等差數(shù)列的前項和,是首項為1的等比數(shù)列的前項和,為數(shù)列的前項和,為數(shù)列的前項和,已知.(1)若,求;(2)若,求.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】∵,,∴面,面,∴,A正確;∵平面即為平面,平面即為平面,且平面,∴平面平面,∴平面平面,∴B正確;當(dāng)時,為鈍角,∴C錯;將面與面沿展成平面圖形,線段即為的最小值,在中,,利用余弦定理解三角形得,即,∴D正確,故選C考點:立體幾何中的動態(tài)問題【思路點睛】立體幾何問題的求解策略是通過降維,轉(zhuǎn)化為平面幾何問題,具體方法表現(xiàn)為:
求空間角、距離,歸到三角形中求解;2.對于球的內(nèi)接外切問題,作適當(dāng)?shù)慕孛妫纫芊从吵鑫恢藐P(guān)系,又要反映出數(shù)量關(guān)系;求曲面上兩點之間的最短距離,通過化曲為直轉(zhuǎn)化為同一平面上兩點間的距離2、B【解析】根據(jù)已知條件求得的規(guī)律,從而確定正確選項.【詳解】,,,,,……,以此類推,,所以.故選:B3、B【解析】由奇數(shù)+奇數(shù)=偶數(shù),奇數(shù)+偶數(shù)=奇數(shù)可知,數(shù)列{Fn}中F3,F(xiàn)6,F(xiàn)9,F(xiàn)12,,F(xiàn)3n為偶數(shù),其余項都為奇數(shù),再根據(jù)an=,即可求出數(shù)列{an}的前36項和【詳解】由奇數(shù)+奇數(shù)=偶數(shù),奇數(shù)+偶數(shù)=奇數(shù)可知,數(shù)列{Fn}中F3,F(xiàn)6,F(xiàn)9,F(xiàn)12,,F(xiàn)3n為偶數(shù),其余項都為奇數(shù),∴前36項共有12項為偶數(shù),∴數(shù)列{an}的前36項和為12×1+24×0=12.故選:B4、D【解析】求出直線直線過的定點A,由題意可知垂足是落在以O(shè)A為直徑的圓上,由此可利用的幾何意義求得答案,【詳解】直線,即,令,解得,即直線過定點,由過坐標(biāo)原點作直線的垂線,垂足為,可知:落在以O(shè)A為直徑的圓上,而以O(shè)A為直徑的圓為,如圖示:故可看作是圓上的點到原點距離的平方,而圓過原點,圓上點到原點的最遠距離為,但將原點坐標(biāo)代入直線中,不成立,即直線l不過原點,所以不可能和原點重合,故,故選:D5、C【解析】作出圖形,進而根據(jù)勾股定理并結(jié)合圓與圓的位置關(guān)系即可求得答案.【詳解】如示意圖,由題意,,則,又,,所以,所以.故選:C.6、A【解析】過圓外一點,引圓的兩條切線,則經(jīng)過兩切點的直線方程為,故選7、D【解析】利用復(fù)數(shù)除法運算和復(fù)數(shù)相等可用表示出,進而得到之間關(guān)系.【詳解】,,,則.故選:D.8、A【解析】設(shè),,設(shè)與平行且與相切的直線與切于,由導(dǎo)數(shù)的幾何意義可求出點的坐標(biāo),則到直線的距離最小值為點到直線的距離,再求解即可.【詳解】解:設(shè),,設(shè)與平行且與相切的直線與切于所以所以則到直線的距離為,即到直線的距離最小值為,故選:A9、D【解析】由題設(shè)可得求出橢圓參數(shù),即可得方程.【詳解】由題設(shè),知:,可得,則,∴C的方程為.故選:D.10、B【解析】首先根據(jù)二項展開式的各項系數(shù)和,求得,再根據(jù)二項展開式的通項為,求得,再求二項展開式中的系數(shù).【詳解】因為二項展開式的各項系數(shù)和,所以,又二項展開式的通項為=,,所以二項展開式中的系數(shù)為.答案選擇B【點睛】本題考查二項式展開系數(shù)、通項等公式,屬于基礎(chǔ)題11、B【解析】利用逆否命題、含有邏輯聯(lián)結(jié)詞命題的真假性、充分和必要條件、空間基底等知識對四個判斷進行分析,由此確定正確答案.【詳解】①,原命題的逆否命題為“,若且,則”,逆否命題是真命題,所以原命題是真命題,①正確.②,若“”為真命題,則p,q至少有一個真命題,②錯誤.③,函數(shù)為偶函數(shù)的充要條件是“”.所以“”是函數(shù)為偶函數(shù)的充分不必要條件,③錯誤.④,若為空間的一個基底,即不共面,若共面,則存在不全為零的,使得,故,因為為空間的一個基底,,故,矛盾,故不共面,所以構(gòu)成空間的另一基底,④正確.所以正確的判斷是個.故選:B12、C【解析】設(shè)出點C坐標(biāo),求出的重心并代入歐拉線方程,驗證并排除部分選項,余下選項再由外心、垂心驗證判斷作答.【詳解】設(shè)頂點的坐標(biāo)為,則的重心坐標(biāo)為,依題意,,整理得:,對于A,當(dāng)時,,不滿足題意,排除A;對于D,當(dāng)時,,不滿足題意,排除D;對于B,當(dāng)時,,對于C,當(dāng)時,,直線AB的斜率,線段AB中點,線段AB中垂線方程:,即,由解得:,于是得的外心,若點,則直線BC的斜率,線段BC中點,該點與點M確定直線斜率為,顯然,即點M不在線段BC的中垂線上,不滿足題意,排除B;若點,則直線BC的斜率,線段BC中點,線段BC中垂線方程為:,即,由解得,即點為的外心,并且在直線上,邊AB上的高所在直線:,即,邊BC上的高所在直線:,即,由解得:,則的垂心,此時有,即的垂心在直線上,選項C滿足題意.故選:C【點睛】結(jié)論點睛:的三頂點,則的重心為.二、填空題:本題共4小題,每小題5分,共20分。13、3【解析】根據(jù)導(dǎo)數(shù)幾何意義,可得的值,根據(jù)點M在切線上,可求得的值,即可得答案.【詳解】由導(dǎo)數(shù)的幾何意義可得,,又在切線上,所以,則=3,故答案為:3【點睛】本題考查導(dǎo)數(shù)的幾何意義的應(yīng)用,考查分析理解的能力,屬基礎(chǔ)題.14、【解析】將原式子變形為:,將代入變形后的式子得到結(jié)果即可.【詳解】將代入變形后的式子得到結(jié)果為故答案為:15、【解析】求出函數(shù)的導(dǎo)函數(shù),把代入即可得到切線的斜率,然后根據(jù)和斜率寫出切線的方程即可.【詳解】解:由函數(shù)知,把代入得到切線的斜率則切線方程為:,即.故答案為:【點睛】本題考查導(dǎo)數(shù)的幾何意義,屬于基礎(chǔ)題16、##【解析】分析可知,結(jié)合空間向量數(shù)量積的坐標(biāo)運算可求得結(jié)果.【詳解】由已知可得,,因為,則,即,解得.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)原式可因式分解為,令,設(shè)可求解出的兩個虛根,同理可求解的兩個虛根,即得解;(2)六個點構(gòu)成的圖形為正六邊形,邊長為1,計算即可【小問1詳解】由題意,當(dāng)時,設(shè)故,所以解得:,即當(dāng)時,設(shè)故所以解得:,即故:【小問2詳解】六個根對應(yīng)的點分別為A,B,C,D,E,F(xiàn),其中在復(fù)平面中描出這六個點如圖所示:六個點構(gòu)成的圖形為正六邊形,邊長為1故18、(1);(2)1.【解析】(1)將圓C的圓心坐標(biāo)代入直線l的方程計算作答.(2)由給定條件求出圓心C到直線l的距離,再利用點到直線距離公式計算作答.【小問1詳解】圓的圓心,半徑,因直線l平分圓C的周長,則直線l過圓心,即,解得,所以m的值是.【小問2詳解】由(1)知,圓C的圓心,半徑,因直線l被圓C截得的弦長為,則有圓心C到直線l的距離,因此,,解得,所以m的值是1.19、(1),(2)8【解析】(1)利用已知的關(guān)系把替換成,再把兩式作差后整理即得通項公式,的通項公式可由已知條件建立基本量的方程求解.(2)由的通項公式可判斷,,,當(dāng)時,所有正項的和即為的最大項的值.小問1詳解】,,兩式相減得所以,又也滿足,故;設(shè)等比數(shù)列的公比為,由得,即,因為,即,,(負(fù)值舍去),所以【小問2詳解】由題意,,則,,,且當(dāng)時,所以的最大值是.20、(1)橢圓方程為雙曲線方程為;(2)12【解析】(1)根據(jù)半焦距,設(shè)橢圓長半軸為a,由離心率之比求出a,進而求出橢圓短半軸的長及雙曲線的虛半軸的長,寫出橢圓和雙曲線的標(biāo)準(zhǔn)方程;(2)由橢圓、雙曲線的定義求出與的長,在三角形中,利用余弦定理求出cos∠的值,進一步求得sin∠的值,代入面積公式得答案試題解析:(1)設(shè)橢圓方程為,雙曲線方程為(a,b,m,n>0,且a>b),則解得:a=7,m=3,∴b=6,n=2,∴橢圓方程為雙曲線方程為(2)不妨設(shè)F1,F(xiàn)2分別為左、右焦點,P是第一象限的一個交點,則PF1+PF2=14,PF1-PF2=6,∴PF1=10,PF2=4,∴cos∠F1PF2==,∴sin∠F1PF2=.∴S△F1PF2=PF1·PF2sin∠F1PF2=·10·4·=12考點:橢圓雙曲線方程及性質(zhì)21、(1)證明見解析,(2)證明見解析【解析】(1)在等式兩邊同時除以,結(jié)合等差數(shù)列的定義可證得數(shù)列為等差數(shù)列,確定該數(shù)列的首項和公差,可求得的表達式;(2)求得,利用裂項相消法求得,即可證
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度校園食堂承包與托管全面合作協(xié)議書4篇
- 2024版長途貨物配送合同
- 2025年度專業(yè)稅務(wù)代理記賬公司員工保密與競業(yè)禁止協(xié)議4篇
- 耐火線槽行業(yè)行業(yè)發(fā)展趨勢及投資戰(zhàn)略研究分析報告
- 淄博關(guān)于成立鋰電三元正極材料公司可行性報告
- 2025年度個人購房擔(dān)保借款合同房產(chǎn)交易資金監(jiān)管協(xié)議4篇
- 2025年度個人租賃車位合同規(guī)范范本4篇
- 2025年度個人滑翔傘租賃服務(wù)合同4篇
- 2025年度個人股份期權(quán)授予合同樣本4篇
- 2025年度個人家居裝修分期付款合同模板4篇
- 繪本《圖書館獅子》原文
- 給水管道施工與安裝技術(shù)要求(課件)
- 警輔 培訓(xùn) 課件
- 安全使用公共WiFi網(wǎng)絡(luò)的方法
- 法拍輔助工作管理制度
- 中控室保密與信息安全政策
- 后端開發(fā)年終總結(jié)
- 2023年管理學(xué)原理考試題庫附答案
- 萬達廣場營銷活動管理及效果考核規(guī)定
- 過敏性皮炎的護理查房
- 【可行性報告】2023年電動自行車相關(guān)項目可行性研究報告
評論
0/150
提交評論