2025屆河南省安陽市第35中學(xué) 高二數(shù)學(xué)第一學(xué)期期末調(diào)研試題含解析_第1頁
2025屆河南省安陽市第35中學(xué) 高二數(shù)學(xué)第一學(xué)期期末調(diào)研試題含解析_第2頁
2025屆河南省安陽市第35中學(xué) 高二數(shù)學(xué)第一學(xué)期期末調(diào)研試題含解析_第3頁
2025屆河南省安陽市第35中學(xué) 高二數(shù)學(xué)第一學(xué)期期末調(diào)研試題含解析_第4頁
2025屆河南省安陽市第35中學(xué) 高二數(shù)學(xué)第一學(xué)期期末調(diào)研試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2025屆河南省安陽市第35中學(xué)高二數(shù)學(xué)第一學(xué)期期末調(diào)研試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.過點的直線在兩坐標軸上的截距之和為零,則該直線方程為()A. B.C.或 D.或2.已知直線l經(jīng)過,兩點,則直線l的傾斜角是()A.30° B.60°C.120° D.150°3.在等差數(shù)列中,,則的公差為()A.1 B.2C.3 D.44.設(shè)是公差的等差數(shù)列,如果,那么()A. B.C. D.5.?dāng)?shù)列滿足,則數(shù)列的前n項和為()A. B.C. D.6.設(shè)是虛數(shù)單位,則復(fù)數(shù)對應(yīng)的點在平面內(nèi)位于()A.第一象限 B.第二象限C.第三象限 D.第四象限7.礦山爆破時,在爆破點處炸開的礦石的運動軌跡可看作是不同的拋物線,根據(jù)地質(zhì)、炸藥等因素可以算出這些拋物線的范圍,這個范圍的邊界可以看作一條拋物線,叫“安全拋物線”,如圖所示.已知某次礦山爆破時的安全拋物線的焦點為,則這次爆破時,礦石落點的最遠處到點的距離為()A. B.2C. D.8.已知圓的圓心在軸上,半徑為2,且與直線相切,則圓的方程為A. B.或C. D.或9.雙曲線:(,)的左、右焦點分別為、,點在雙曲線上,,,則的離心率為()A. B.2C. D.10.已知空間向量,,,則()A.4 B.-4C.0 D.211.已知雙曲線的左焦點為F,O為坐標原點,M,N兩點分別在C的左、右兩支上,若四邊形OFMN為菱形,則C的離心率為()A. B.C. D.12.已知函數(shù)f(x)=x(lnx-ax)有兩個極值點,則實數(shù)a的取值范圍是()A.(-∞,0) B.C.(0,1) D.(0,+∞)二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)過點K(-1,0)的直線l與拋物線C:y2=4x交于A、B兩點,為拋物線的焦點,若|BF|=2|AF|,則cos∠AFB=_______14.過橢圓的右焦點作兩條相互垂直的直線m,n,直線m與橢圓交于A,B兩點,直線n與橢圓交于C,D兩點,若.則下列方程①;②;③;④.其中可以作為直線AB的方程的是______(寫出所有正確答案的序號)15.已知橢圓的左、右焦點分別為、,關(guān)于原點對稱的點A、B在橢圓上,且滿足,若令且,則該橢圓離心率的取值范圍為___________16.過圓內(nèi)的點作一條直線,使它被該圓截得的線段最長,則直線的方程是______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系中,已知菱形的頂點和所在直線的方程為.(1)求對角線所在直線的一般方程;(2)求所在直線的一般方程.18.(12分)在平面直角坐標系中,圓C:,直線l:(1)若直線l與圓C相切于點N,求切點N的坐標;(2)若,直線l上有且僅有一點A滿足:過點A作圓C的兩條切線AP、AQ,切點分別為P,Q,且使得四邊形APCQ為正方形,求m的值19.(12分)已知圓C:,圓C與x軸交于A,B兩點(1)求直線y=x被圓C所截得的弦長;(2)圓M過點A,B,且圓心在直線y=x+1上,求圓M的方程20.(12分)已知,,其中.(1)求的值;(2)設(shè)(其中、為正整數(shù)),求的值.21.(12分)已知函數(shù)的圖像在(為自然對數(shù)的底數(shù))處取得極值.(1)求實數(shù)的值;(2)若不等式在恒成立,求的取值范圍.22.(10分)已知橢圓的離心率為,以橢圓兩個焦點與短軸的一個端點為頂點構(gòu)成的三角形的面積為(1)求橢圓C的標準方程;(2)過點作直線l與橢圓C相切于點Q,且直線l斜率大于0,過線段PQ的中點R作直線交橢圓于A,B兩點(點A,B不在y軸上),連結(jié)PA,PB,分別與橢圓交于點M,N,試判斷直線MN的斜率是否為定值;若是,請求出該定值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】分截距為零和不為零兩種情況討論即可﹒【詳解】當(dāng)直線過原點時,滿足題意,方程為,即2x-y=0;當(dāng)直線不過原點時,設(shè)方程為,∵直線過(1,2),∴,∴,∴方程為,故選:D﹒2、C【解析】設(shè)直線l的傾斜角為,由題意可得直線l的斜率,即,∵,∴直線l的傾斜角為,故選:.3、A【解析】根據(jù)等差數(shù)列性質(zhì)可得方程組,求得公差.【詳解】等差數(shù)列中,,,由通項公式可得解得故選:A4、D【解析】由已知可得,即可得解.【詳解】由已知可得.故選:D.5、D【解析】利用等差數(shù)列的前n項和公式得到,進而得到,利用裂項相消法求和.【詳解】依題意得:,,,故選:D6、A【解析】計算出復(fù)數(shù)即可得出結(jié)果.【詳解】由于,對應(yīng)的點的坐標為,在第一象限,故選:A.7、D【解析】根據(jù)給定條件求出拋物線的頂點,結(jié)合拋物線的性質(zhì)求出p值即可計算作答.【詳解】依題意,拋物線的頂點坐標為,則拋物線的頂點到焦點的距離為,p>0,解得,于是得拋物線的方程為,由得,,即拋物線與軸的交點坐標為,因此,,所以礦石落點的最遠處到點的距離為.故選:D8、D【解析】設(shè)圓心坐標,由點到直線距離公式可得或,進而求得答案【詳解】設(shè)圓心坐標,因為圓與直線相切,所以由點到直線的距離公式可得,解得或.因此圓的方程為或.【點睛】本題考查利用直線與圓的位置關(guān)系求圓的方程,屬于一般題9、C【解析】根據(jù)雙曲線定義、余弦定理,結(jié)合題意,求得關(guān)系,即可求得離心率.【詳解】根據(jù)題意,作圖如下:不妨設(shè),則,,①;在△中,由余弦定理可得:,代值得:,②;聯(lián)立①②兩式可得:;在△和△中,由,可得:,整理得:,③;聯(lián)立②③可得:,又,故可得:,則,則,故離心率為.故選:C.10、A【解析】根據(jù)空間向量平行求出x,y,進而求得答案.【詳解】因為,所以存在實數(shù),使得,則.故選:A.11、C【解析】由題意可得且,從而求出點的坐標,將其代入雙曲線方程中,即可得出離心率.【詳解】由題意,四邊形為菱形,如圖,則且,分別為的左,右支上的點,設(shè)點在第二象限,在第一象限.由雙曲線的對稱性,可得,過點作軸交軸于點,則,所以,則,所以,所以,則,即,解得,或,由雙曲線的離心率,所以取,則故選:C12、B【解析】函數(shù)f(x)=x(lnx﹣ax),則f′(x)=lnx﹣ax+x(﹣a)=lnx﹣2ax+1,令f′(x)=lnx﹣2ax+1=0得lnx=2ax﹣1,函數(shù)f(x)=x(lnx﹣ax)有兩個極值點,等價于f′(x)=lnx﹣2ax+1有兩個零點,等價于函數(shù)y=lnx與y=2ax﹣1的圖象有兩個交點,在同一個坐標系中作出它們的圖象(如圖)當(dāng)a=時,直線y=2ax﹣1與y=lnx的圖象相切,由圖可知,當(dāng)0<a<時,y=lnx與y=2ax﹣1的圖象有兩個交點則實數(shù)a的取值范圍是(0,)故選B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)已知設(shè)直線方程為與C聯(lián)立,結(jié)合|BF|=2|AF|,利用韋達定理計算可得點A,B的坐標,進而求出向量的坐標,進而利用求向量夾角余弦值的方法,即可得到答案.【詳解】令直線的方程為將直線方程代入批物線C:的方程,得令且,所以由拋物線的定義知,由|BF|=2|AF|可知,,則,解得:,,則A,B兩點坐標分別為,則則.故答案為:14、①②【解析】①②結(jié)合橢圓方程得到與橢圓參數(shù)的關(guān)系,即可判斷;③④聯(lián)立直線與橢圓方程,利用弦長公式求,即可判斷.【詳解】由題設(shè),且右焦點為,①時直線,故,則符合題設(shè);②時,同①知:符合題設(shè);③時直線,聯(lián)立直線AB與橢圓方程并整理得:,則,同理可得,則,不合題設(shè);④時,同③分析知:,不合題設(shè);故答案為:①②.15、【解析】由得為矩形,則,故,結(jié)合正弦函數(shù)即可求得范圍【詳解】由已知可得,且四邊形為矩形所以,又因為,所以得離心率因為,所以,可得,從而故答案為:16、【解析】當(dāng)直線l過圓心時滿足題意,進而求出答案.【詳解】圓的標準方程為:,圓心,當(dāng)l過圓心時滿足題意,,所以l的方程為:.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)首先求的中點,再利用垂直關(guān)系求直線的斜率,即可求解;(2)首先求點的坐標,再求直線的斜率,求得直線的斜率,利用點斜式直線方程,即可求解.【小問1詳解】由和得:中點四邊形為菱形,,且中點,對角線所在直線方程為:,即:.【小問2詳解】由,解得:,,,,直線的方程為:,即:.18、(1)或(2)3.【解析】(1)設(shè)切點坐標,由切點和圓心連線與切線垂直以及切點在圓上建立關(guān)系式,求解切點坐標即可;(2)由圓的方程可得圓心坐標及半徑,由APCQ為正方形,可得|AC|=可得圓心到直線的距離為,可得m的值【小問1詳解】解:設(shè)切點為,則有,解得:或x0=-2+1y0=-2,所以切點的坐標為或【小問2詳解】解:圓C:的圓心(1,0),半徑r=2,設(shè),由題意可得,由四邊形APCQ為正方形,可得|AC|=,即,由題意直線l⊥AC,圓C:(x﹣1)2+y2=4,則圓心(1,0)到直線的距離,可得,m>0,解得m=3.19、(1);(2).【解析】(1)根據(jù)已知條件,結(jié)合垂徑定理,以及點到直線的距離公式,即可求解(2)根據(jù)已知圓的方程,令y=0,結(jié)合韋達定理,求出圓心的橫坐標,即可求出圓心,再結(jié)合勾股定理,即可求出半徑【小問1詳解】∵圓C:,∴,即圓心為(-1,1),半徑r=3,∵直線y=x,即x-y=0,∴圓心(-1,1)到直線x-y=0的距離d=,∴直線y=x被圓C所截得的弦長為=【小問2詳解】設(shè)A(x1,y1),B(x2,y2),∵圓C:,圓C與x軸交于A,B兩點,∴x2-2x-7=0,則,|x1-x2|==,∴圓心的橫坐標為x=,∵圓心在直線y=x+1上,∴圓心為(1,2),∴半徑r=,故圓M的方程為20、(1);(2).【解析】(1),,寫出的展開式通項,由可得出關(guān)于的方程,解出的值,再利用賦值法可求得所求代數(shù)式的值;(2)寫出的展開式,求出、的值,即可求得的值.【小問1詳解】解:設(shè),,的展開式通項為,所以,,即,,解得,所以,.【小問2詳解】解:,,,因此,21、(1)(2)【解析】(1)由求得的值.(2)由分離常數(shù),通過構(gòu)造函數(shù)法,結(jié)合導(dǎo)數(shù)求得的取值范圍.【小問1詳解】因為,所以,因為函數(shù)的圖像在點處取得極值,所以,,經(jīng)檢驗,符合題意,所以;【小問2詳解】由(1)知,,所以在恒成立,即對任意恒成立.令,則.設(shè),易得是增函數(shù),所以,所以,所以函數(shù)在上為增函數(shù),則,所以.22、(1)(2)是,【解析】(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論