版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
四川省眉山市青神中學(xué)2025屆高二上數(shù)學(xué)期末考試模擬試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知P是橢圓上的一點(diǎn),是橢圓的兩個(gè)焦點(diǎn)且,則的面積是()A. B.2C. D.12.在各項(xiàng)均為正數(shù)等比數(shù)列中,若成等差數(shù)列,則=()A. B.C. D.3.圓心為的圓,在直線x﹣y﹣1=0上截得的弦長(zhǎng)為,那么,這個(gè)圓的方程為()A. B.C. D.4.已知,,,,則()A. B.C. D.5.已知五個(gè)數(shù)據(jù)3,4,x,6,7的平均數(shù)是x,則該樣本標(biāo)準(zhǔn)差為()A.1 B.C. D.26.已知?jiǎng)訄A過定點(diǎn),并且與定圓外切,則動(dòng)圓的圓心的軌跡是()A.拋物線 B.橢圓C.雙曲線 D.雙曲線的一支7.已知數(shù)列是各項(xiàng)均為正數(shù)的等比數(shù)列,若,則公比()A. B.2C.2或 D.48.如圖,正四棱柱是由四個(gè)棱長(zhǎng)為1的小正方體組成的,是它的一條側(cè)棱,是它的上底面上其余的八個(gè)點(diǎn),則集合的元素個(gè)數(shù)()A.1 B.2C.4 D.89.用反證法證明命題“a,b∈N,如果ab可以被5整除,那么a,b至少有1個(gè)能被5整除.”假設(shè)內(nèi)容是()A.a,b都能被5整除 B.a,b都不能被5整除C.a不能被5整除 D.a,b有1個(gè)不能被5整除10.在直三棱柱中,,且,點(diǎn)是棱上的動(dòng)點(diǎn),則點(diǎn)到平面距離的最大值是()A. B.C.2 D.11.圓與圓的位置關(guān)系為()A.外切 B.內(nèi)切C.相交 D.相離12.已知x>0、y>0,且1,若恒成立,則實(shí)數(shù)m的取值范圍為()A.(1,9) B.(9,1)C.[9,1] D.(∞,1)∪(9,+∞)二、填空題:本題共4小題,每小題5分,共20分。13.若函數(shù)解析式,則使得成立的的取值范圍是___________.14.設(shè),則_________15.記為等差數(shù)列的前n項(xiàng)和.若,則__________16.已知過橢圓上的動(dòng)點(diǎn)作圓(為圓心):的兩條切線,切點(diǎn)分別為,若的最小值為,則橢圓的離心率為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四邊形是某半圓柱的軸截面(過上下底面圓心連線的截面),線段是該半圓柱的一條母線,點(diǎn)為線的中點(diǎn)(1)證明:;(2)若,且點(diǎn)到平面的距離為1,求線段的長(zhǎng)18.(12分)記為數(shù)列的前項(xiàng)和,且(1)求的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和19.(12分)已知函數(shù)(1)討論函數(shù)的單調(diào)性;(2)若對(duì)任意的,都有成立,求的取值范圍20.(12分)二項(xiàng)式展開式中第五項(xiàng)的二項(xiàng)式系數(shù)是第三項(xiàng)系數(shù)的4倍.求:(1);(2)展開式中的所有的有理項(xiàng).21.(12分)如圖所示在多面體中,平面,四邊形是正方形,,,,.(1)求證:直線平面;(2)求平面與平面夾角的余弦值.22.(10分)已知直線與圓.(1)當(dāng)直線l恰好平分圓C的周長(zhǎng)時(shí),求m的值;(2)當(dāng)直線l被圓C截得的弦長(zhǎng)為時(shí),求m的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】設(shè),先求出m、n,再利用面積公式即可求解.【詳解】在中,設(shè),則,解得:.因?yàn)?,所以,所以的面積是.故選:A2、A【解析】利用等差中項(xiàng)的定義以及等比數(shù)列的通項(xiàng)公式即可求解.【詳解】設(shè)等比數(shù)列的公比為,∵成等差數(shù)列,∴,即,解得或(舍去),∴,故選:.3、A【解析】由垂徑定理,根據(jù)弦長(zhǎng)的一半及圓心到直線的距離求出圓半徑,即可寫出圓的標(biāo)準(zhǔn)方程.【詳解】圓心到直線x﹣y﹣1=0的距離弦長(zhǎng),設(shè)圓半徑為r,則故r=2則圓的標(biāo)準(zhǔn)方程為故選:A【點(diǎn)睛】本題主要考查直線與圓的位置關(guān)系和圓的標(biāo)準(zhǔn)方程,屬于基礎(chǔ)題.4、D【解析】根據(jù)對(duì)數(shù)函數(shù)的性質(zhì)和冪函數(shù)的單調(diào)性可得正確的選項(xiàng).【詳解】因?yàn)椋?,故,又,在上的增函?shù),故,故,故選:D.5、B【解析】先求出的值,然后利用標(biāo)準(zhǔn)差公式求解即可【詳解】解:因?yàn)槲鍌€(gè)數(shù)據(jù)3,4,x,6,7的平均數(shù)是x,所以,解得,所以標(biāo)準(zhǔn)差,故選:B6、D【解析】結(jié)合雙曲線定義的有關(guān)知識(shí)確定正確選項(xiàng).【詳解】圓圓心為,半徑為,依題意可知,結(jié)合雙曲線的定義可知,的軌跡為雙曲線的一支.故選:D7、B【解析】由兩式相除即可求公比.【詳解】設(shè)等比數(shù)列的公比為q,∵其各項(xiàng)均為正數(shù),故q>0,∵,∴,又∵,∴=4,則q=2.故選:B.8、A【解析】用空間直角坐標(biāo)系看正四棱柱,根據(jù)向量數(shù)量積進(jìn)行計(jì)算即可.【詳解】建立空間直角坐標(biāo)系,為原點(diǎn),正四棱柱的三個(gè)邊的方向分別為軸、軸和看軸,如右圖示,,設(shè),則AB所以集合,元素個(gè)數(shù)為1.故選:A.9、B【解析】由于反證法是命題的否定的一個(gè)運(yùn)用,故用反證法證明命題時(shí),可以設(shè)其否定成立進(jìn)行推證.命題“a,b∈N,如果ab可被5整除,那么a,b至少有1個(gè)能被5整除.”的否定是“a,b都不能被5整除”考點(diǎn):反證法10、D【解析】建立空間直角坐標(biāo)系,設(shè)出點(diǎn)的坐標(biāo),運(yùn)用點(diǎn)到平面的距離公式,求出點(diǎn)到平面距離的最大值.【詳解】解:以為原點(diǎn),分別以,,所在直線為,,軸建立如圖所示的空間直角坐標(biāo)第,則,,,設(shè)點(diǎn),故,,.設(shè)設(shè)平面的法向量為,則即,取,則.所以點(diǎn)到平面距離.當(dāng),即時(shí),距離有最大值為.故選:D.【點(diǎn)睛】本題考查空間內(nèi)點(diǎn)到面的距離最值問題,屬于中檔題.11、A【解析】根據(jù)兩圓半徑和、差、圓心距之間的大小關(guān)系進(jìn)行判斷即可.【詳解】由,該圓的圓心為,半徑為.圓圓心為,半徑為,因?yàn)閮蓤A的圓心距為,兩圓的半徑和為,所以兩圓的半徑和等于兩圓的圓心距,因此兩圓相外切,故選:A12、B【解析】應(yīng)用基本不等式“1”的代換求的最小值,注意等號(hào)成立條件,再根據(jù)題設(shè)不等式恒成立有,解一元二次不等式求解集即可.【詳解】由題設(shè),,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,∴要使恒成立,只需,故,∴.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由題意先判斷函數(shù)為偶函數(shù),再利用的導(dǎo)函數(shù)判斷在上單調(diào)遞增,根據(jù)偶函數(shù)的對(duì)稱性得上單調(diào)遞減.要使成立,即,解不等式即可得到答案.【詳解】,,為偶函數(shù),當(dāng)時(shí),,故函數(shù)在上單調(diào)遞增.為偶函數(shù),在上單調(diào)遞減.要使成立,即.故答案為:.14、【解析】求出函數(shù)的導(dǎo)數(shù),再令,即可得出答案.【詳解】解:由,得,所以.故答案為:.15、【解析】因?yàn)槭堑炔顢?shù)列,根據(jù)已知條件,求出公差,根據(jù)等差數(shù)列前項(xiàng)和,即可求得答案.【詳解】是等差數(shù)列,且,設(shè)等差數(shù)列的公差根據(jù)等差數(shù)列通項(xiàng)公式:可得即:整理可得:解得:根據(jù)等差數(shù)列前項(xiàng)和公式:可得:.故答案:.【點(diǎn)睛】本題主要考查了求等差數(shù)列的前項(xiàng)和,解題關(guān)鍵是掌握等差數(shù)列的前項(xiàng)和公式,考查了分析能力和計(jì)算能力,屬于基礎(chǔ)題.16、【解析】由橢圓方程和圓的方程可確定橢圓焦點(diǎn)、圓心和半徑;當(dāng)最小時(shí),可知,此時(shí);根據(jù)橢圓性質(zhì)知,解方程可求得,進(jìn)而得到離心率.【詳解】由橢圓方程知其右焦點(diǎn)為;由圓的方程知:圓心為,半徑為;當(dāng)最小時(shí),則最小,即,此時(shí)最??;此時(shí),;為橢圓右頂點(diǎn)時(shí),,解得:,橢圓的離心率.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解析】(1)先證明,,利用判定定理證明平面,從而得到;(2)設(shè),利用等體積法,由由,解出a.【詳解】(1)證明:由題意可知平面,平面∴∵所對(duì)為半圓直徑∴∴和是平面內(nèi)兩條相交直線∴平面平面∴(2)設(shè),因?yàn)?,且所以,設(shè),在等腰直角三角形中,取BC的中點(diǎn)E,連結(jié)AE,則,取BC1的中點(diǎn)為P,連結(jié)DP,∵,∴,又為的中點(diǎn),∴,∴,即的高為∴,∵,且∴平面,∵平面,且即到平面的距離為1,而由,即解得:,即.【點(diǎn)睛】立體幾何解答題(1)第一問一般是幾何關(guān)系的證明,用判定定理;(2)第二問是計(jì)算,求角或求距離(求體積通常需要先求距離).如果求體積,常用的方法有:(1)直接法;(2)等體積法;(3)補(bǔ)形法;(4)向量法.18、(1)(2)【解析】(1)利用,再結(jié)合等比數(shù)列的概念,即可求出結(jié)果;(2)由(1)可知數(shù)列是以為首項(xiàng),公差為的等差數(shù)列,根據(jù)等差數(shù)列的前項(xiàng)和公式,即可求出結(jié)果.【小問1詳解】解:當(dāng)時(shí),,解得;當(dāng)且時(shí),所以所以是以為首項(xiàng),為公比的等比數(shù)列所以;【小問2詳解】解:由(1)可知,所以,又,所以數(shù)列是以為首項(xiàng),公差為的等差數(shù)列,所以數(shù)列的前項(xiàng)和.19、(1)答案見解析;(2).【解析】(1)求,分別討論不同范圍下的正負(fù),分別求單調(diào)性;(2)由(1)所求的單調(diào)性,結(jié)合,分別求出的范圍再求并集即可.【詳解】解:(1)由已知定義域?yàn)?,?dāng),即時(shí),恒成立,則在上單調(diào)遞增;當(dāng),即時(shí),(舍)或,所以在上單調(diào)遞減,在上單調(diào)遞增.所以時(shí),在上單調(diào)遞增;時(shí),在上單調(diào)遞減,在上單調(diào)遞增.(2)由(1)可知,當(dāng)時(shí),在上單調(diào)遞增,若對(duì)任意的恒成立,只需,而恒成立,所以成立;當(dāng)時(shí),若,即,則在上單調(diào)遞增,又,所以成立;若,則在上單調(diào)遞減,在上單調(diào)遞增,又,所以,,不滿足對(duì)任意的恒成立.所以綜上所述:.20、(1)6;(2),,【解析】(1)先得到二項(xiàng)展開式的通項(xiàng),再根據(jù)第五項(xiàng)的二項(xiàng)式系數(shù)是第三項(xiàng)系數(shù)的4倍,建立方程求解.(2)根據(jù)(1)的通項(xiàng)公式求解.【詳解】(1)二項(xiàng)展開式的通項(xiàng).依題意得,,所以,解得.(2)由(1)得,當(dāng),3,6時(shí)為有理項(xiàng),故有理有,,.【點(diǎn)睛】本題主要考查二項(xiàng)式定理的通項(xiàng)公式,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.21、(1)證明見解析;(2).【解析】(1)以點(diǎn)為坐標(biāo)原點(diǎn),分別以、、為、、軸建立空間直角坐標(biāo)系,利用空間向量法可證明出直線平面;(2)利用空間向量法可求得平面與平面夾角的余弦值.【小問1詳解】證明:因?yàn)槠矫?,,以點(diǎn)為坐標(biāo)原點(diǎn),分別以、、為、、軸建立空間直角坐標(biāo)系,則、、、、、,所以,,,設(shè)平面的法向量為,依題意有,即,令,可得,,則,平面,因此,平面.【小問2詳解】解:由題,,設(shè)平面的法向
溫馨提示
- 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 智能保險(xiǎn)弱電綜合布線施工合同
- 房地產(chǎn)項(xiàng)目地暖安裝施工合同
- 物理學(xué)院浮雕施工合同
- 2024年油漆材料購(gòu)銷合同3篇
- 易拉罐回收機(jī)課程設(shè)計(jì)
- 親子課程設(shè)計(jì)目的
- 2024衛(wèi)生院傳染病區(qū)改造與裝修施工合同3篇
- 機(jī)原課程設(shè)計(jì)棒料
- 2024年電話客服中心勞動(dòng)合同
- 2024年度新型建筑材料設(shè)計(jì)與供應(yīng)合同3篇
- 2024年重慶市安全員C證考試(專職安全員)題庫(kù)及答案
- 八上道法知識(shí)點(diǎn)默寫+答案
- 大學(xué)生心理健康智慧樹知到期末考試答案章節(jié)答案2024年上海杉達(dá)學(xué)院
- 《中國(guó)心力衰竭診斷和治療指南2024》解讀(總)
- 知道智慧網(wǎng)課《會(huì)計(jì)學(xué)原理》章節(jié)測(cè)試答案
- 《道德經(jīng)》的智慧啟示智慧樹知到期末考試答案2024年
- 2024年大學(xué)生心理健康教育考試題庫(kù)及答案(含各題型)
- 23秋國(guó)家開放大學(xué)《漢語(yǔ)基礎(chǔ)》期末大作業(yè)(課程論文)參考答案
- 支撐架施工驗(yàn)收記錄表
- 2020-2021學(xué)年湖北省武漢市某校七年級(jí)(上)期中數(shù)學(xué)試卷
- 圖書管理系統(tǒng)設(shè)計(jì)(附源代碼)
評(píng)論
0/150
提交評(píng)論