嘉興市重點(diǎn)中學(xué)2025屆高二上數(shù)學(xué)期末達(dá)標(biāo)檢測(cè)試題含解析_第1頁(yè)
嘉興市重點(diǎn)中學(xué)2025屆高二上數(shù)學(xué)期末達(dá)標(biāo)檢測(cè)試題含解析_第2頁(yè)
嘉興市重點(diǎn)中學(xué)2025屆高二上數(shù)學(xué)期末達(dá)標(biāo)檢測(cè)試題含解析_第3頁(yè)
嘉興市重點(diǎn)中學(xué)2025屆高二上數(shù)學(xué)期末達(dá)標(biāo)檢測(cè)試題含解析_第4頁(yè)
嘉興市重點(diǎn)中學(xué)2025屆高二上數(shù)學(xué)期末達(dá)標(biāo)檢測(cè)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩10頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

嘉興市重點(diǎn)中學(xué)2025屆高二上數(shù)學(xué)期末達(dá)標(biāo)檢測(cè)試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知點(diǎn)是拋物線上的動(dòng)點(diǎn),過(guò)點(diǎn)作圓的切線,切點(diǎn)為,則的最小值為()A. B.C. D.2.工業(yè)生產(chǎn)者出廠價(jià)格指數(shù)(PRoduceRPRiceIndexfoRIndustRialPRoducts,簡(jiǎn)稱PPI)是反映工業(yè)企業(yè)產(chǎn)品第一次出售時(shí)的出廠價(jià)格的變化趨勢(shì)和變動(dòng)幅度,是反映某一時(shí)期生產(chǎn)領(lǐng)域價(jià)格變動(dòng)情況的重要經(jīng)濟(jì)指標(biāo),也是制定有關(guān)經(jīng)濟(jì)政策和國(guó)民經(jīng)濟(jì)核算的重要依據(jù).根據(jù)下面提供的我國(guó)2020年1月—2021年11月的工業(yè)生產(chǎn)者出廠價(jià)格指數(shù)的月度同比(將上一年同月作為基期進(jìn)行對(duì)比的價(jià)格指數(shù))和月度環(huán)比(將上月作為基期進(jìn)行對(duì)比的價(jià)格指數(shù))漲跌情況的折線圖判斷,以下結(jié)論正確的()A.2020年各月的PPI在逐月增大B.2020年各月的PPI均高于2019年同期水平C.2021年1月—11月各月的PPI在逐月減小D.2021年1月—11月各月的PPI均高于2020年同期水平3.已知為原點(diǎn),點(diǎn),以為直徑的圓的方程為()A. B.C. D.4.已知雙曲線滿足,且與橢圓有公共焦點(diǎn),則雙曲線的方程為()A. B.C. D.5.若數(shù)列滿足,則數(shù)列的通項(xiàng)公式為()A. B.C. D.6.連續(xù)拋擲一枚硬幣3次,觀察正面出現(xiàn)的情況,事件“至少2次出現(xiàn)正面”的對(duì)立事件是()A.只有2次出現(xiàn)反面 B.至多2次出現(xiàn)正面C.有2次或3次出現(xiàn)正面 D.有2次或3次出現(xiàn)反面7.若,則x的值為()A.4 B.6C.4或6 D.88.“”是“直線與直線垂直”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件9.已知是定義在上的奇函數(shù),對(duì)任意兩個(gè)不相等的正數(shù)、都有,記,,,則()A. B.C. D.10.已知等差數(shù)列的前項(xiàng)和為,,,,則的值為()A. B.C. D.11.若點(diǎn)在橢圓上,則該橢圓的離心率為()A. B.C. D.12.已知命題p:,,則命題p的否定為()A, B.,C., D.,二、填空題:本題共4小題,每小題5分,共20分。13.由曲線圍成的圖形的面積為_______________14.已知拋物線的焦點(diǎn)坐標(biāo)為,則該拋物線上一點(diǎn)到焦點(diǎn)的距離的取值范圍是___________.15.已知雙曲線C:的一條漸近線與直線l:平行,則雙曲線C的離心率是______16.已知等差數(shù)列,的前n項(xiàng)和分別為,若,則=______三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知直線l:x-y+2=0,一個(gè)圓的圓心C在x軸正半軸上,且該圓與直線l和y軸均相切(1)求該圓的方程;(2)若直線x+my-1=0與圓C交于A、B兩點(diǎn),且|AB|=,求m的值18.(12分)已知梯形如圖甲所示,其中,,,四邊形是邊長(zhǎng)為1正方形,沿將四邊形折起,使得平面平面,得到如圖乙所示的幾何體(1)求證:平面;(2)若點(diǎn)在線段上,且與平面所成角的正弦值為,求線段的長(zhǎng)度.19.(12分)已知等差數(shù)列的前項(xiàng)和為,滿足,.(1)求數(shù)列的通項(xiàng)公式與前項(xiàng)和;(2)求的值.20.(12分)已知數(shù)列的前項(xiàng)和為,若.(1)求的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和.21.(12分)如圖1,在中,,,,分別是,邊上的中點(diǎn),將沿折起到的位置,使,如圖2(1)求點(diǎn)到平面的距離;(2)在線段上是否存在一點(diǎn),使得平面與平面夾角的余弦值為.若存在,求出長(zhǎng);若不存在,請(qǐng)說(shuō)明理由22.(10分)在直角坐標(biāo)系中,點(diǎn)到兩點(diǎn)、的距離之和等于,設(shè)點(diǎn)的軌跡為,直線與交于、兩點(diǎn)(1)求曲線的方程;(2)若,求的值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】分析可知圓的圓心為拋物線的焦點(diǎn),可求出的最小值,再利用勾股定理可求得的最小值.【詳解】設(shè)點(diǎn)的坐標(biāo)為,有,由圓的圓心坐標(biāo)為,是拋物線的焦點(diǎn)坐標(biāo),有,由圓的幾何性質(zhì)可得,又由,可得的最小值為故選:C.2、D【解析】根據(jù)折線圖中同比、環(huán)比的正負(fù)情況,結(jié)合各選項(xiàng)的描述判斷正誤.【詳解】A:2020年前5個(gè)月PPI在逐月減小,錯(cuò)誤;B:2020年各月同比為負(fù)值,即低于2019年同期水平,錯(cuò)誤;C:2021年1月—11月各月的PPI環(huán)比為正值,即逐月增大,錯(cuò)誤;D:2021年1月—11月各月的PPI同比為正值,即高于2020年同期水平,正確.故選:D.3、A【解析】求圓的圓心和半徑,根據(jù)圓的標(biāo)準(zhǔn)方程即可求解﹒【詳解】由題知圓心為,半徑,∴圓方程為﹒故選:A﹒4、A【解析】根據(jù)橢圓的標(biāo)準(zhǔn)方程求出,利用雙曲線,結(jié)合建立方程求出,,即可求出雙曲線的漸近線方程【詳解】橢圓的標(biāo)準(zhǔn)方程為,橢圓中的,雙曲線的焦點(diǎn)與橢圓的焦點(diǎn)相同,雙曲線中,雙曲線滿足,即又在雙曲線中,即,解得:,所以雙曲線的方程為,故選:A【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題主要考查雙曲線方程的求解,根據(jù)橢圓和雙曲線的關(guān)系建立方程求出,,是解決本題的關(guān)鍵,考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題5、D【解析】由,分兩步,當(dāng)求出,當(dāng)時(shí)得到,兩式作差即可求出數(shù)列的通項(xiàng)公式;【詳解】解:因?yàn)棰?,?dāng)時(shí),,當(dāng)時(shí)②,①②得,所以,當(dāng)時(shí)也成立,所以;故選:D6、D【解析】根據(jù)對(duì)立事件的定義即可得出結(jié)果.【詳解】對(duì)立事件是指事件A和事件B必有一件發(fā)生,連續(xù)拋擲一枚均勻硬幣3次,“至少2次出現(xiàn)正面”即有2次或3次出現(xiàn)正面,對(duì)立事件為0次或1次出現(xiàn)正面,即“有2次或3次出現(xiàn)反面”故選:D7、C【解析】根據(jù)組合數(shù)的性質(zhì)可求解.【詳解】,或,即或.故選:C8、A【解析】求出兩直線垂直的充要條件后再根據(jù)充分必要條件的定義判斷.【詳解】由,得,即或所以,反之,則不然所以“”是“直線與直線垂直”的充分不必要條件.故選:A9、A【解析】由題,可得是定義在上的偶函數(shù),且在上單調(diào)遞減,在上單調(diào)遞增,根據(jù)函數(shù)的單調(diào)性,即可判斷出的大小關(guān)系.【詳解】設(shè),由題,得,即,所以函數(shù)在上單調(diào)遞減,因?yàn)槭嵌x在R上的奇函數(shù),所以是定義在上的偶函數(shù),因此,,,即.故選:A【點(diǎn)睛】本題主要考查利用函數(shù)的單調(diào)性判斷大小的問(wèn)題,其中涉及到構(gòu)造函數(shù)的運(yùn)用.10、A【解析】由可求得,利用可構(gòu)造方程求得.【詳解】,,,,,解得:.故選:A.11、C【解析】根據(jù)給定條件求出即可計(jì)算橢圓的離心率.【詳解】因點(diǎn)在橢圓,則,解得,而橢圓長(zhǎng)半軸長(zhǎng),所以橢圓離心率.故選:C12、A【解析】根據(jù)特稱命題的否定是全稱命題,結(jié)合已知條件,即可求得結(jié)果.【詳解】因?yàn)槊}p:,,故命題p的否定為:,.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】當(dāng)時(shí),曲線表示的圖形為以為圓心,以為半徑的圓在第一象限的部分,所以面積為,根據(jù)對(duì)稱性,可知由曲線圍成的圖形的面積為考點(diǎn):本小題主要考查曲線表示的平面圖形的面積的求法,考查學(xué)生分類討論思想的運(yùn)用和運(yùn)算求解能力.點(diǎn)評(píng):解決此題的關(guān)鍵是看出所求圖形在四個(gè)象限內(nèi)是相同的,然后求出在一個(gè)象限內(nèi)的圖形的面積即可解決問(wèn)題.14、【解析】根據(jù)題意,求得,得到焦點(diǎn)坐標(biāo),結(jié)合拋物線的定義,得到,根據(jù),求得,即可求解.【詳解】由拋物線的焦點(diǎn)坐標(biāo)為,可得,解得,設(shè)拋物線上的任意一點(diǎn)為,焦點(diǎn)為,由拋物線的定義可得,因?yàn)椋?,所以拋物線上一點(diǎn)到焦點(diǎn)的距離的取值范圍是.故答案為:.15、【解析】先用兩直線平行斜率相等求出,再利用離心率的定義求解即可.【詳解】由題意可得雙曲線C的一條漸近線方程為,則,即,則,故雙曲線C的離心率故答案為:.16、【解析】利用等差數(shù)列的性質(zhì)和等差數(shù)列的前項(xiàng)和公式可得,再令即可求解.【詳解】由等差數(shù)列的性質(zhì)和等差數(shù)列的前項(xiàng)和公式可得:因?yàn)?,故答案為:【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題解題的關(guān)鍵是利用等差數(shù)列的性質(zhì)可得,再轉(zhuǎn)化為前項(xiàng)和公式的形式,代入的值即可.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)0【解析】(1)設(shè)出圓心坐標(biāo),利用題干條件得到方程,求出,從而求出該圓的方程;(2)利用點(diǎn)到直線距離公式及垂徑定理進(jìn)行求解.【小問(wèn)1詳解】設(shè)圓心為,,則由題意得:,解得:或(舍去),故該圓的方程為【小問(wèn)2詳解】圓心到直線的距離為,由垂徑定理得:,解得:18、(1)證明過(guò)程見解析;(2).【解析】(1)根據(jù)面面垂直的性質(zhì)定理進(jìn)行證明即可;(2)建立空間直角坐標(biāo)系,利用空間向量夾角公式進(jìn)行求解即可.【小問(wèn)1詳解】∵平面平面,平面平面平面,,∴平面;【小問(wèn)2詳解】(2)建系如圖:設(shè)平面的法向量,,,,,,則,設(shè),,,解得或(舍),,∴.19、(1),;(2).【解析】(1)設(shè)出等差數(shù)列的公差,借助前項(xiàng)和公式列式計(jì)算作答.(2)由(1)的結(jié)論借助裂項(xiàng)相消去求解作答.【小問(wèn)1詳解】設(shè)等差數(shù)列的公差為,因,,則,解得,于是得,,所以數(shù)列的通項(xiàng)公式為,前項(xiàng)和.【小問(wèn)2詳解】由(1)知,,所以.20、(1)(2)【解析】(1)根據(jù)所給條件先求出首項(xiàng),然后仿寫,作差即可得到的通項(xiàng)公式;(2)根據(jù)(1)求出的通項(xiàng)公式,觀察是由一個(gè)等差數(shù)列加上一個(gè)等比數(shù)列得到,要求其前項(xiàng)和,采用分組求和法結(jié)合公式法可求出前項(xiàng)和【小問(wèn)1詳解】當(dāng)時(shí),,解得;當(dāng)時(shí),,∴,化簡(jiǎn)得,∴是首項(xiàng)為1,公比為2的等比數(shù)列,∴,因此的通項(xiàng)公式為.【小問(wèn)2詳解】由(1)得,∴,∴,∴21、(1)(2)存在,【解析】(1)根據(jù)題意分別由已知條件計(jì)算出的面積和的面積,利用求解,(2)如圖建立空間直角坐標(biāo)系,設(shè),然后求出平面與平面的法向量,利用向量平夾角公式列方程可求得結(jié)果小問(wèn)1詳解】在中,,因?yàn)?,分別是,邊上的中點(diǎn),所以∥,,所以,所以,因?yàn)?,所以平面,所以平面,因?yàn)槠矫?,所以,所以,因?yàn)槠矫?,平面,所以平面平面,因?yàn)?,所以,因?yàn)椋允堑冗吶切?,取的中點(diǎn),連接,則,,因?yàn)槠矫嫫矫?,平面平面,平面,所以平面,中,,所以邊上的高為,所以,在梯形中,,設(shè)點(diǎn)到平面的距離為,因,所以,所以,得,所以點(diǎn)到平面的距離為【小問(wèn)2詳解】由(1)可知平面,,所以以為原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,則,設(shè),則,設(shè)平面的法向量為,則,令,則,設(shè)平面的法向量為,則,令,則,則平面與平面夾角的余弦值為,兩邊平方得,,解得或(舍去),所以,所以22、(1);(2).【解析】(1)本題可根據(jù)橢圓的定義求出點(diǎn)的軌跡;(2)本題

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論