2025屆浙江省磐安縣二中數(shù)學(xué)高二上期末學(xué)業(yè)水平測(cè)試模擬試題含解析_第1頁(yè)
2025屆浙江省磐安縣二中數(shù)學(xué)高二上期末學(xué)業(yè)水平測(cè)試模擬試題含解析_第2頁(yè)
2025屆浙江省磐安縣二中數(shù)學(xué)高二上期末學(xué)業(yè)水平測(cè)試模擬試題含解析_第3頁(yè)
2025屆浙江省磐安縣二中數(shù)學(xué)高二上期末學(xué)業(yè)水平測(cè)試模擬試題含解析_第4頁(yè)
2025屆浙江省磐安縣二中數(shù)學(xué)高二上期末學(xué)業(yè)水平測(cè)試模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩10頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2025屆浙江省磐安縣二中數(shù)學(xué)高二上期末學(xué)業(yè)水平測(cè)試模擬試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.魏晉時(shí)期數(shù)學(xué)家劉徽首創(chuàng)割圓術(shù),他在《九章算術(shù)》方田章圓田術(shù)中指出:“割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓周合體而無(wú)所失矣.”這是注述中所用的割圓術(shù)是一種無(wú)限與有限的轉(zhuǎn)化過(guò)程,比如在正數(shù)中的“”代表無(wú)限次重復(fù),設(shè),則可以利用方程求得,類(lèi)似地可得到正數(shù)()A.2 B.3C. D.2.在三棱柱中,,,,則這個(gè)三棱柱的高()A1 B.C. D.3.圓與圓的位置關(guān)系是()A.相離 B.內(nèi)含C.相切 D.相交4.?dāng)?shù)列滿(mǎn)足,,,則數(shù)列的前10項(xiàng)和為()A.60 B.61C.62 D.635.在中,a,b,c分別為角A,B,C的對(duì)邊,已知,,的面積為,則()A. B.C. D.6.已知中,角,,的對(duì)邊分別為,,,且,,成等比數(shù)列,則這個(gè)三角形的形狀是()A.直角三角形 B.等邊三角形C.等腰直角三角形 D.鈍角三角形7.設(shè)等差數(shù)列的前項(xiàng)和為,若,則的值為()A.28 B.39C.56 D.1178.如圖,雙曲線,是圓的一條直徑,若雙曲線過(guò),兩點(diǎn),且離心率為,則直線的方程為()A. B.C. D.9.若某群體中成員只用現(xiàn)金支付的概率為,既用現(xiàn)金支付也用非現(xiàn)金支付的概率為,則不用現(xiàn)金支付的概率為()A. B.C. D.10.過(guò)點(diǎn)且與拋物線只有一個(gè)公共點(diǎn)的直線有()A.1條 B.2條C.3條 D.0條11.已知拋物線,,點(diǎn)在拋物線上,記點(diǎn)到直線的距離為,則的最小值是()A.5 B.6C.7 D.812.拋擲兩枚硬幣,若記出現(xiàn)“兩個(gè)正面”“兩個(gè)反面”“一正一反”的概率分別為,,,則下列判斷中錯(cuò)誤的是().A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知橢圓的左、右焦點(diǎn)分別為,,上頂點(diǎn)為A,直線與橢圓C的另一個(gè)交點(diǎn)為B,則的面積為_(kāi)__________.14.銀行一年定期的存款的利率為p,如果將a元存入銀行一年定期,到期后將本利再存一年定期,到期后再存一年定期……,則10年后到期本利共________元15.某工廠生產(chǎn)甲、乙、丙、丁四種不同型號(hào)的產(chǎn)品,產(chǎn)量分別為100,200,150,50件.為檢驗(yàn)產(chǎn)品的質(zhì)量,現(xiàn)用分層抽樣的方法從以上所有產(chǎn)品中抽取60件進(jìn)行檢驗(yàn),則應(yīng)從丙種型號(hào)的產(chǎn)品中抽取___________件16.設(shè)雙曲線(0<a<b)的半焦距為c,直線l過(guò)(a,0),(0,b)兩點(diǎn),且原點(diǎn)到直線l的距離為c,求雙曲線的離心率三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知橢圓(a>b>0)的右焦點(diǎn)為F2(3,0),離心率為e.(1)若e=,求橢圓的方程;(2)設(shè)直線y=kx與橢圓相交于A,B兩點(diǎn),M,N分別為線段AF2,BF2的中點(diǎn),若坐標(biāo)原點(diǎn)O在以MN為直徑的圓上,且<e≤,求k的取值范圍.18.(12分)已知函數(shù),記f(x)的導(dǎo)數(shù)為f′(x).若曲線f(x)在點(diǎn)(1,f(1))處的切線斜率為﹣3,且x=2時(shí)y=f(x)有極值,(Ⅰ)求函數(shù)f(x)的解析式;(Ⅱ)求函數(shù)f(x)在[﹣1,1]上的最大值和最小值19.(12分)已知等差數(shù)列的前項(xiàng)和為,且,(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和20.(12分)設(shè)橢圓的焦距為,原點(diǎn)到經(jīng)過(guò)兩點(diǎn)的直線的距離為.(1)求橢圓的離心率;(2)如圖所示,是圓的一條直徑,若橢圓經(jīng)過(guò)兩點(diǎn),求橢圓的標(biāo)準(zhǔn)方程21.(12分)已知圓的圓心在直線上,與軸正半軸相切,且被直線:截得的弦長(zhǎng)為.(1)求圓的方程;(2)設(shè)點(diǎn)在圓上運(yùn)動(dòng),點(diǎn),且點(diǎn)滿(mǎn)足,記點(diǎn)的軌跡為.①求的方程,并說(shuō)明是什么圖形;②試探究:在直線上是否存在定點(diǎn)(異于原點(diǎn)),使得對(duì)于上任意一點(diǎn),都有為一常數(shù),若存在,求出所有滿(mǎn)足條件的點(diǎn)的坐標(biāo),若不存在,說(shuō)明理由.22.(10分)已知直線l:x-y+2=0,一個(gè)圓的圓心C在x軸正半軸上,且該圓與直線l和y軸均相切(1)求該圓的方程;(2)若直線x+my-1=0與圓C交于A、B兩點(diǎn),且|AB|=,求m的值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】設(shè),則,解方程可得結(jié)果.【詳解】設(shè),則且,所以,所以,所以,所以或(舍).所以.故選:A【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:設(shè)是解題關(guān)鍵.2、D【解析】先求出平面ABC的法向量,然后將高看作為向量在平面ABC的法向量上的投影的絕對(duì)值,則答案可求.【詳解】設(shè)平面ABC的法向量為,而,,則,即有,不妨令,則,故,設(shè)三棱柱的高為h,則,故選:D.3、D【解析】先由圓的方程得出兩圓的圓心坐標(biāo)和半徑,求出兩圓心間的距離與兩半徑之和與差比較可得答案.【詳解】圓的圓心為,半徑為圓的圓心為,半徑為兩圓心間的距離為由,所以?xún)蓤A相交.故選:D4、B【解析】討論奇偶性,應(yīng)用等差、等比前n項(xiàng)和公式對(duì)作分組求和即可.【詳解】當(dāng)且為奇數(shù)時(shí),,則,當(dāng)且為偶數(shù)時(shí),,則,∴.故選:B.5、C【解析】利用面積公式,求出,進(jìn)而求出,利用余弦定理求出,再利用正弦定理求出【詳解】由面積公式得:,因?yàn)榈拿娣e為,所以,求得:因,所以由余弦定理得:所以由正弦定理得:,即,解得:故選:C6、B【解析】根據(jù)題意求出,結(jié)合余弦定理分情況討論即可.【詳解】解:因?yàn)?,所?由題意得,利用余弦定理得:.當(dāng),即時(shí),,即,解得:.此時(shí)三角形為等邊三角形;當(dāng),即時(shí),,不成立.所以三角形的形狀是等邊三角形.故選:B.【點(diǎn)睛】本題主要考查利用余弦定理判斷三角形的形狀,屬于基礎(chǔ)題.7、B【解析】由已知結(jié)合等差數(shù)列的求和公式及等差數(shù)列的性質(zhì)即可求解.【詳解】因?yàn)榈炔顢?shù)列中,,則.故選:B.8、D【解析】由離心率求得,設(shè)出兩點(diǎn)坐標(biāo)代入雙曲線方程相減求得直線斜率與的關(guān)系得結(jié)論【詳解】由題意,則,即,由圓方程知,設(shè),,則,,又,兩式相減得,所以,直線方程為,即故選:D9、A【解析】利用對(duì)立事件的概率公式可求得所求事件的概率.【詳解】由對(duì)立事件概率公式可知,該群體中的成員不用現(xiàn)金支付的概率為.故選:A.10、B【解析】過(guò)的直線的斜率存在和不存在兩種情況分別討論即可得出答案.【詳解】易知過(guò)點(diǎn),且斜率不存在的直線為,滿(mǎn)足與拋物線只有一個(gè)公共點(diǎn).當(dāng)直線的斜率存在時(shí),設(shè)直線方程為,與聯(lián)立得,當(dāng)時(shí),方程有一個(gè)解,即直線與擾物線只有一個(gè)公共點(diǎn).故滿(mǎn)足題意的直線有2條.故選:B11、D【解析】先求出拋物線的焦點(diǎn)和準(zhǔn)線,利用拋物線的定義將轉(zhuǎn)化為的距離,即可求解.【詳解】由已知得拋物線的焦點(diǎn)為,準(zhǔn)線方程為,設(shè)點(diǎn)到準(zhǔn)線的距離為,則,則由拋物線的定義可知∵,當(dāng)點(diǎn)、、三點(diǎn)共線時(shí)等號(hào)成立,∴,故選:.12、A【解析】把拋擲兩枚硬幣的情況均列舉出來(lái),利用古典概型的計(jì)算公式,把,,算出來(lái),判斷四個(gè)選項(xiàng)的正誤.【詳解】?jī)擅队矌牛洖榕c,則拋擲兩枚硬幣,一共會(huì)出現(xiàn)的情況有四種,A正B正,A正B反,A反B正,A反B反,則,,,所以A錯(cuò)誤,BCD正確故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】求出直線的方程,聯(lián)立方程,求得B點(diǎn)的坐標(biāo),從而可得出答案.【詳解】解:由題意知,,,直線的方程為,聯(lián)立方程組,解得,或,即,所以.故答案為:.14、【解析】根據(jù)題意求出每年底的本利和,歸納即可.【詳解】由題意知,第一年本利和為:元,第二年本利和為:元,第三年本利和為:元,以此類(lèi)推,第十年本利和為:元,故答案:15、【解析】根據(jù)分層抽樣的方法,即可求解.【詳解】由題意,甲、乙、丙、丁四種不同型號(hào)的產(chǎn)品,產(chǎn)量分別為100,200,150,50件,用分層抽樣的方法從以上所有產(chǎn)品中抽取60件進(jìn)行檢驗(yàn),則應(yīng)從丙種型號(hào)的產(chǎn)品中抽取個(gè)數(shù)為件.故答案為:.16、e=2.【解析】先求出直線的方程,利用原點(diǎn)到直線的距離為,,求出的值,進(jìn)而根據(jù)求出離心率【詳解】由l過(guò)兩點(diǎn)(a,0),(0,b),得l的方程為bx+ay-ab=0.由原點(diǎn)到l的距離為c,得=c.將b=代入平方后整理,得162-16·+3=0.解關(guān)于的一元二次方程得=或.∵e=,∴e=或e=2.又0<a<b,故e===>.∴應(yīng)舍去e=.故所求離心率e=2.【點(diǎn)睛】本題考查雙曲線性質(zhì),考查求雙曲線的離心率常用的方法即構(gòu)造出關(guān)于的等式,屬于中檔題三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)【解析】(1)根據(jù)右焦點(diǎn)為F2(3,0),以及,求得a,b,c即可.(2)聯(lián)立,根據(jù)M,N分別為線段AF2,BF2中點(diǎn),且坐標(biāo)原點(diǎn)O在以MN為直徑的圓上,易得OM⊥ON,則四邊形OMF2N為矩形,從而AF2⊥BF2,然后由0,結(jié)合韋達(dá)定理求解.【詳解】(1)由題意得c=3,,所以.又因?yàn)閍2=b2+c2,所以b2=3.所以橢圓的方程為.(2)由,得(b2+a2k2)x2-a2b2=0.設(shè)A(x1,y1),B(x2,y2),所以x1+x2=0,x1x2=,依題意易知,OM⊥ON,四邊形OMF2N為矩形,所以AF2⊥BF2.因?yàn)?x1-3,y1),(x2-3,y2),所以(x1-3)(x2-3)+y1y2=(1+k2)x1x2+9=0.即,將其整理為k2==-1-.因?yàn)?lt;e≤,所以2≤a<3,12≤a2<18.所以k2≥,即k∈【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題第二問(wèn)的關(guān)鍵是由O在以MN為直徑的圓上,即OM⊥ON,得到四邊形OMF2N為矩形,推出AF2⊥BF2,結(jié)合韋達(dá)定理得出斜率k與離心率e的關(guān)系.18、(Ⅰ)f(x)=x3﹣3x2+1;(Ⅱ)最大值為1,最小值為﹣3【解析】(Ⅰ)求導(dǎo)可得f′(x)的解析式,根據(jù)導(dǎo)數(shù)的幾何意義,可得k=f′(1)=-3,又在x=2處有極值,所以f′(2)=0,即可求得a,b的值,即可得答案;(Ⅱ)由(Ⅰ)可得f′(x)的解析式,令f′(x)=0,解得x=0或x=2,討論f(x)在﹣1<x<0,0<x<1上的單調(diào)性,即可求得f(x)的極值,檢驗(yàn)邊界值,即可得答案.【詳解】(Ⅰ)由題意得:f′(x)=3x2+2ax+b,所以k=f′(1)=3+2a+b=﹣3,f′(2)=12+4a+b=0,解得a=﹣3,b=0,所以f(x)=x3﹣3x2+1;(Ⅱ)由(Ⅰ)知,令f′(x)=3x2﹣6x=0,解得x=0或x=2,當(dāng)﹣1<x<0時(shí),f′(x)>0,f(x)在(﹣1,0)是增函數(shù),當(dāng)0<x<1時(shí),f′(x)<0,f(x)在(0,1)是減函數(shù),所以f(x)的極大值為f(0)=1,又f(1)=﹣1,f(﹣1)=﹣3,所以f(x)在[﹣1,1]上的最大值為1,最小值為﹣319、(1)(2)【解析】(1)設(shè)等差數(shù)列公差為d,首項(xiàng)為a1,根據(jù)已知條件列出方程組求解a1,d,代入通項(xiàng)公式即可得答案;(2)根據(jù)等差、等比數(shù)列的前n項(xiàng)和公式,利用分組求和法即可求解【小問(wèn)1詳解】解:設(shè)等差數(shù)列公差為d,首項(xiàng)為a1,由題意,有,解得,所以;【小問(wèn)2詳解】解:,所以20、(1)(2)【解析】(1)根據(jù)題意得,進(jìn)而求解離心率即可;(2)根據(jù)題意得圓心是線段的中點(diǎn),且,易知斜率存在,設(shè)其直線方程為,再結(jié)合韋達(dá)定理及弦長(zhǎng)公式求解即可.【小問(wèn)1詳解】解:過(guò)點(diǎn)的直線方程為,∴原點(diǎn)到直線的距離,由,得,解得離心率.【小問(wèn)2詳解】解:由(1)知,橢圓的方程為.依題意,圓心是線段的中點(diǎn),且.易知,不與軸垂直,設(shè)其直線方程,聯(lián)立,得.設(shè),則,.由,得,解得.所以.于是.由,得,解得.故橢圓的方程為.21、(1);(2)①,圓;②存在,.【解析】(1)設(shè)圓心,根據(jù)題意,得到半徑,根據(jù)弦長(zhǎng)的幾何表示,由題中條件,列出方程求解,得出,從而可得圓心和半徑,進(jìn)而可得出結(jié)果;(2)①設(shè),根據(jù)向量的坐標(biāo)表示,由題中條件,得到,代入圓的方程,即可得出結(jié)果;②假設(shè)存在一點(diǎn)滿(mǎn)足(其中為常數(shù)),設(shè),根據(jù)題意,得到,再由①,得到,兩式聯(lián)立化簡(jiǎn)整理,得到,推出,求解得出,即可得出結(jié)果.【詳解】(1)設(shè)圓心,則由圓與軸正半軸相切,可得半徑.∵圓心到直線的距離,由,解得.故圓心為或,半徑等于.∵圓與軸正半軸相切圓心只能為故圓的方程為;(2)①設(shè),則:,,

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論