版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
福建省南安市柳城中學(xué)2025屆高一上數(shù)學(xué)期末調(diào)研試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設(shè),則“”是“”的()A.充要條件 B.充分不必要條件C.必要不充分條件 D.既不充分也不必要條件2.下列四組函數(shù)中,定義域相同的一組是()A.和 B.和C.和 D.和3.圓與圓的位置關(guān)系是()A.內(nèi)含 B.內(nèi)切C.相交 D.外切4.已知函數(shù),若,,,則實數(shù)、、的大小關(guān)系為()A. B.C. D.5.定義域在R上的函數(shù)是奇函數(shù)且,當(dāng)時,,則的值為()A. B.C D.6.函數(shù)(且)與函數(shù)在同一坐標(biāo)系內(nèi)的圖象可能是()A. B.C. D.7.若第三象限角,且,則()A. B.C. D.8.設(shè)a,bR,,則()A. B.C. D.9.平行于直線且與圓相切的直線的方程是A.或 B.或C.或 D.或10.與函數(shù)的圖象不相交的一條直線是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知一個銅質(zhì)的實心圓錐的底面半徑為6,高為3,現(xiàn)將它熔化后鑄成一個銅球(不計損耗),則該銅球的半徑是__________12.已知函數(shù)是偶函數(shù),則實數(shù)的值是__________13.在內(nèi)不等式的解集為__________14.__________15.不等式的解集是__________16.若是冪函數(shù)且在單調(diào)遞增,則實數(shù)_______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知集合.(1)當(dāng)時.求;(2)若是的充分條件,求實數(shù)的取值范圍.18.已知函數(shù)的圖像如圖所示.(1)求函數(shù)的解析式;(2)當(dāng)時,求函數(shù)的最大值和最小值.19.(1)計算:.(2)化簡:.20.已知函數(shù),不等式解集為,設(shè)(1)若存在,使不等式成立,求實數(shù)的取值范圍;(2)若方程有三個不同的實數(shù)解,求實數(shù)的取值范圍21.已知函數(shù),在同一周期內(nèi),當(dāng)時,取得最大值3;當(dāng)時,取得最小值.(1)求函數(shù)的解析式;(2)求函數(shù)的單調(diào)減區(qū)間;(3)當(dāng)時,函數(shù)有兩個零點,求實數(shù)m的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】根據(jù)一元二次不等式的解法,結(jié)合充分性、必要性的定義進(jìn)行判斷即可.【詳解】由,由不一定能推出,但是由一定能推出,所以“”是“”的必要不充分條件,故選:C2、C【解析】根據(jù)根式、分式、對數(shù)的性質(zhì)求各函數(shù)的定義域即可.【詳解】A:定義域為,定義域為,不合題設(shè);B:定義域為,定義域為,不合題設(shè);C:、定義域均為,符合題設(shè);D:定義域為,定義域為,不合題設(shè);故選:C.3、D【解析】根據(jù)兩圓的圓心距和兩半徑的和與差的關(guān)系判斷.【詳解】因為圓與圓的圓心距為:兩圓的半徑之和為:,所以兩圓相外切,故選:D4、D【解析】根據(jù)條件判斷函數(shù)是偶函數(shù),且當(dāng)時是增函數(shù),結(jié)合函數(shù)單調(diào)性進(jìn)行比較即可【詳解】函數(shù)為偶函數(shù),當(dāng)時,為增函數(shù),,,,則(1),即,則,故選:5、A【解析】根據(jù)函數(shù)的奇偶性和周期性進(jìn)行求解即可.【詳解】因為,所以函數(shù)的周期為,因為函數(shù)是奇函數(shù),當(dāng)時,,所以,故選:A6、C【解析】分,兩種情況進(jìn)行討論,結(jié)合指數(shù)函數(shù)的單調(diào)性和拋物線的開口方向和對稱軸選出正確答案.【詳解】解:當(dāng)時,增函數(shù),開口向上,對稱軸,排除B,D;當(dāng)時,為減函數(shù),開口向下,對稱軸,排除A,故選:C.【點睛】思路點睛:函數(shù)圖象的辨識可從以下方面入手:(1)從函數(shù)的定義域,判斷圖象的左右位置;從函數(shù)的值域,判斷圖象的上下位置(2)從函數(shù)的單調(diào)性,判斷圖象的變化趨勢;(3)從函數(shù)的奇偶性,判斷圖象的對稱性;(4)從函數(shù)的特征點,排除不合要求的圖象.7、D【解析】由已知結(jié)合求出即可得出.【詳解】因為第三象限角,所以,因為,且,解得或,則.故選:D.8、D【解析】利用不等式的基本性質(zhì)及作差法,對結(jié)論逐一分析,選出正確結(jié)論即可.【詳解】因為,則,所以,即,故A錯誤;因為,所以,則,所以,即,∴,,即,故B錯誤;∵由,因,所以,又因為,所以,即,故C錯誤;由可得,,故D正確.故選:D.9、A【解析】設(shè)所求直線為,由直線與圓相切得,,解得.所以直線方程為或.選A.10、C【解析】由題意求函數(shù)的定義域,即可求得與函數(shù)圖象不相交的直線.【詳解】函數(shù)的定義域是,解得:,當(dāng)時,,函數(shù)的圖象不相交的一條直線是.故選:C【點睛】本題考查正切函數(shù)的定義域,屬于簡單題型.二、填空題:本大題共6小題,每小題5分,共30分。11、3【解析】設(shè)銅球的半徑為,則,得,故答案為.12、1【解析】函數(shù)是偶函數(shù),,即,解得,故答案為.【方法點睛】本題主要考查函數(shù)的奇偶性,屬于中檔題.已知函數(shù)的奇偶性求參數(shù),主要方法有兩個,一是利用:(1)奇函數(shù)由恒成立求解,(2)偶函數(shù)由恒成立求解;二是利用特殊值:奇函數(shù)一般由求解,偶函數(shù)一般由求解,用特殊法求解參數(shù)后,一定要注意驗證奇偶性13、【解析】利用余弦函數(shù)的性質(zhì)即可得到結(jié)果.【詳解】∵,∴,根據(jù)余弦曲線可得,∴.故答案為:14、2【解析】考點:對數(shù)與指數(shù)的運算性質(zhì)15、【解析】根據(jù)對數(shù)不等式解法和對數(shù)函數(shù)的定義域得到關(guān)于的不等式組,解不等式組可得所求的解集【詳解】原不等式等價于,所以,解得,所以原不等式的解集為故答案為【點睛】解答本題時根據(jù)對數(shù)函數(shù)的單調(diào)性得到關(guān)于的不等式組即可,解題中容易出現(xiàn)的錯誤是忽視函數(shù)定義域,考查對數(shù)函數(shù)單調(diào)性的應(yīng)用及對數(shù)的定義,屬于基礎(chǔ)題16、2【解析】由冪函數(shù)可得,解得或2,檢驗函數(shù)單調(diào)性求解即可.【詳解】為冪函數(shù),所以,解得或2.當(dāng)時,,在不單調(diào)遞增,舍去;當(dāng)時,,在單調(diào)遞增成立.故答案為.【點睛】本題主要考查了冪函數(shù)的定義及單調(diào)性,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)或.(2)【解析】(1)解一元二次不等式求集合A、B,再由集合的補、并運算求即可.(2)由充分條件知,則有,進(jìn)而求的取值范圍.【小問1詳解】,當(dāng)時,,或,∴或;【小問2詳解】由是的充分條件,知:,∴,解得,∴的取值范圍為.18、(1);(2)最大值,最小值為-1.【解析】(1)由圖可知,,可得,再將點代入得,結(jié)合,可得的值,即可求出函數(shù)的解析式;(2)根據(jù)函數(shù)的周期,可求時函數(shù)的最大值和最小值就是轉(zhuǎn)化為求函數(shù)在區(qū)間上的最大值和最小值,結(jié)合三角函數(shù)圖象,即可求出函數(shù)的最大值和最小值.試題解析:(1)由圖可知:,則∴,將點代入得,,∴,,即,∵∴∴函數(shù)的解析式為.(2)∵函數(shù)的周期是∴求時函數(shù)的最大值和最小值就是轉(zhuǎn)化為求函數(shù)在區(qū)間上的最大值和最小值.由圖像可知,當(dāng)時,函數(shù)取得最大值為,當(dāng)時,函數(shù)取得最小值為.∴函數(shù)在上的最大值為,最小值為-1.點睛:已知圖象求函數(shù)解析式的方法(1)根據(jù)圖象得到函數(shù)的周期,再根據(jù)求得(2)可根據(jù)代點法求解,代點時一般將最值點的坐標(biāo)代入解析式;也可用“五點法”求解,用此法時需要先判斷出“第一點”的位置,再結(jié)合圖象中的點求出的值(3)在本題中運用了代點的方法求得的值,一般情況下可通過觀察圖象得到的值19、(1);(2)【解析】(1)根據(jù)分?jǐn)?shù)指數(shù)冪及對數(shù)的運算法則計算可得;(2)利用誘導(dǎo)公式及特殊值的三角函數(shù)值計算可得;【詳解】解:(1)(2)20、(1);(2)【解析】(1)由不等式的解集為可知是方程的兩個根,即可求出,根據(jù)的單調(diào)性求出其在的最大值,即可得出m的范圍;(2)方程可化為,令,則有兩個不同的實數(shù)解,,根據(jù)函數(shù)性質(zhì)可列出不等式求解.【詳解】(1)∵不等式的解集為∴,是方程的兩個根∴,解得.∴則∴存在,使不等式成立,等價于在上有解,而在時單調(diào)遞增,∴∴的取值范圍為(2)原方程可化為令,則,則有兩個不同的實數(shù)解,,其中,,或,記,則①,解得或②,不等式組②無實數(shù)解∴實數(shù)的取值范圍為【點睛】本題考查一元二次不等式的解集與方程的根的關(guān)系,考查函數(shù)的單調(diào)性,考查利用函數(shù)性質(zhì)解決方程解的情況,屬于較難題.21、(1);(2);(3).【解析】(1)根據(jù)函數(shù)在同一周期的最值,確定最小正周期和,再由最大值求出,即可得出函數(shù)解析式;(2)根據(jù)正弦函數(shù)的單調(diào)遞減區(qū)間列出不等式求解,即可得出結(jié)果;(3)根據(jù)自變量的范圍,先確定的范圍及單調(diào)性,根據(jù)函數(shù)有兩個零點,推出函數(shù)與直線有兩不同交點,進(jìn)而可得出結(jié)果.【詳解】(1)因為函數(shù),在同一周期內(nèi),當(dāng)時,取得最大值3;當(dāng)時,取得最小值,,,則,所以;又,所以,解得,又,所以,因此;(2)由,解得,∴函數(shù)的單調(diào)遞減區(qū)間為;(3)由,解得,即函數(shù)的單調(diào)遞增區(qū)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年適用:高科技研發(fā)項目合作合同
- 2024蘋果種植基地灌溉系統(tǒng)改造合同3篇
- 2024網(wǎng)絡(luò)游戲開發(fā)與發(fā)行委托合同
- 2024年04月貴州貴州省農(nóng)村信用社高校畢業(yè)生專場網(wǎng)絡(luò)招考活動筆試歷年參考題庫附帶答案詳解
- 2025年度柴油發(fā)電機租賃及電力市場交易合同4篇
- 2024石材干掛工程安全生產(chǎn)與環(huán)境保護(hù)合同3篇
- 二零二五版窗簾安裝與室內(nèi)環(huán)境檢測服務(wù)合同3篇
- 2025年度知識產(chǎn)權(quán)跨境交易及法律服務(wù)合同4篇
- 個人房產(chǎn)買賣合同2024年版5篇
- 2025年度健康醫(yī)療大數(shù)據(jù)研發(fā)與應(yīng)用合同范本4篇
- 寒潮雨雪應(yīng)急預(yù)案范文(2篇)
- DB33T 2570-2023 營商環(huán)境無感監(jiān)測規(guī)范 指標(biāo)體系
- 上海市2024年中考英語試題及答案
- 房屋市政工程生產(chǎn)安全重大事故隱患判定標(biāo)準(zhǔn)(2024版)宣傳海報
- 垃圾車駕駛員聘用合同
- 2025年道路運輸企業(yè)客運駕駛員安全教育培訓(xùn)計劃
- 南京工業(yè)大學(xué)浦江學(xué)院《線性代數(shù)(理工)》2022-2023學(xué)年第一學(xué)期期末試卷
- 2024版機床維護(hù)保養(yǎng)服務(wù)合同3篇
- 《論拒不執(zhí)行判決、裁定罪“執(zhí)行能力”之認(rèn)定》
- 工程融資分紅合同范例
- 2024國家安全員資格考試題庫加解析答案
評論
0/150
提交評論