版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
湖南省瀏陽一中、株洲二中等湘東六校2025屆數(shù)學(xué)高二上期末預(yù)測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在等比數(shù)列中,,則等于()A. B.C. D.2.已知數(shù)列滿足,,,前項(xiàng)和()A. B.C. D.3.已知點(diǎn),和直線,若在坐標(biāo)平面內(nèi)存在一點(diǎn)P,使,且點(diǎn)P到直線l的距離為2,則點(diǎn)P的坐標(biāo)為()A.或 B.或C.或 D.或4.已知實(shí)數(shù)x,y滿足,則的最大值為()A. B.C.2 D.15.青少年視力被社會普遍關(guān)注,為了解他們的視力狀況,經(jīng)統(tǒng)計得到圖中右下角名青少年的視力測量值(五分記錄法)的莖葉圖,其中莖表示個位數(shù),葉表示十分位數(shù).如果執(zhí)行如圖所示的算法程序,那么輸出的結(jié)果是()A. B.C. D.6.已知是虛數(shù)單位,若,則復(fù)數(shù)z的虛部為()A.3 B.-3iC.-3 D.3i7.點(diǎn),是橢圓的左焦點(diǎn),是橢圓上任意一點(diǎn),則的取值范圍是()A. B.C. D.8.已知點(diǎn),點(diǎn)在拋物線上,過點(diǎn)的直線與直線垂直相交于點(diǎn),,則的值為()A. B.C. D.9.拋物線的焦點(diǎn)坐標(biāo)為()A. B.C. D.10.如圖,某鐵路客運(yùn)部門設(shè)計的從甲地到乙地旅客托運(yùn)行李的費(fèi)用c(元)與行李質(zhì)量w(kg)之間的流程圖.已知旅客小李和小張托運(yùn)行李的質(zhì)量分別為30kg,60kg,且他們托運(yùn)的行李各自計費(fèi),則這兩人托運(yùn)行李的費(fèi)用之和為()A.28元 B.33元C.38元 D.48元11.已知,則下列三個數(shù),,()A.都不大于-4 B.至少有一個不大于-4C.都不小于-4 D.至少有一個不小于-412.已知數(shù)列為等差數(shù)列,若,則()A.1 B.2C.3 D.4二、填空題:本題共4小題,每小題5分,共20分。13.已知春季里,甲地每天下雨的概率為,乙地每天下雨的概率大于0,且甲、乙兩地下雨相互獨(dú)立,則春季的一天里,已知乙地下雨的條件下,甲地也下雨的概率為___________.14.已知橢圓交軸于A,兩點(diǎn),點(diǎn)是橢圓上異于A,的任意一點(diǎn),直線,分別交軸于點(diǎn),,則為定值.現(xiàn)將雙曲線與橢圓類比得到一個真命題:若雙曲線交軸于A,兩點(diǎn),點(diǎn)是雙曲線上異于A,的任意一點(diǎn),直線,分別交軸于點(diǎn),,則為定值___15.曲線在處的切線斜率為___________.16.在下列三個問題中:①甲乙二人玩勝負(fù)游戲:每人一次拋擲兩枚質(zhì)地均勻的硬幣,如果規(guī)定:同時出現(xiàn)正面或反面算甲勝,一個正面、一個反面算乙勝,那么這個游戲是公平的;②擲一枚骰子,估計事件“出現(xiàn)三點(diǎn)”的概率,當(dāng)拋擲次數(shù)很大時,此事件發(fā)生的頻率接近其概率;③如果氣象預(yù)報1日—30日的下雨概率是,那么1日—30日中就有6天是下雨的;其中,正確的是___________.(用序號表示)三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,已知圓臺下底面圓的直徑為,是圓上異于、的點(diǎn),是圓臺上底面圓上的點(diǎn),且平面平面,,,、分別是、的中點(diǎn).(1)證明:平面;(2)若直線上平面且過點(diǎn),試問直線上是否存在點(diǎn),使直線與平面所成的角和平面與平面的夾角相等?若存在,求出點(diǎn)的所有可能位置;若不存在,請說明理由.18.(12分)已知四棱錐的底面是矩形,底面,且,設(shè)E、F、G分別為PC、BC、CD的中點(diǎn),H為EG的中點(diǎn),如圖.(1)求證:平面;(2)求直線FH與平面所成角的大小.19.(12分)已知拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn),對稱軸為軸,焦點(diǎn)為,拋物線上一點(diǎn)的橫坐標(biāo)為2,且(1)求拋物線的方程;(2)過點(diǎn)作直線交拋物線于兩點(diǎn),設(shè),判斷是否為定值?若是,求出該定值;若不是,說明理由.20.(12分)如圖,已知拋物線的焦點(diǎn)為,點(diǎn)是軸上一定點(diǎn),過的直線交與兩點(diǎn).(1)若過的直線交拋物線于,證明縱坐標(biāo)之積為定值;(2)若直線分別交拋物線于另一點(diǎn),連接交軸于點(diǎn).證明:成等比數(shù)列.21.(12分)已知橢圓的焦距為4,點(diǎn)在G上.(1)求橢圓G方程;(2)過橢圓G右焦點(diǎn)的直線l與橢圓G交于M,N兩點(diǎn),O為坐標(biāo)原點(diǎn),若,求直線l的方程.22.(10分)共享電動車(sharedev)是一種新的交通工具,通過掃碼開鎖,實(shí)現(xiàn)循環(huán)共享.某記者來到中國傳媒大學(xué)探訪,在校園噴泉旁停放了10輛共享電動車,這些電動車分為熒光綠和橙色兩種顏色,已知從這些共享電動車中任取1輛,取到的是橙色的概率為,若從這些共享電動車中任意抽取3輛.(1)求取出的3輛共享電動車中恰好有一輛是橙色的概率;(2)求取出的3輛共享電動車中橙色的電動車的輛數(shù)X的分布列與數(shù)學(xué)期望.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】根據(jù),然后與,可得,最后簡單計算,可得結(jié)果.【詳解】在等比數(shù)列中,由所以,又,所以所以故選:C【點(diǎn)睛】本題考查等比數(shù)列的性質(zhì),重在計算,當(dāng),在等差數(shù)列中有,在等比數(shù)列中,靈活應(yīng)用,屬基礎(chǔ)題.2、C【解析】根據(jù),利用對數(shù)運(yùn)算得到,再利用等比數(shù)列的前n項(xiàng)和公式求解.【詳解】解:因?yàn)?,所以,則,所以數(shù)列是以為首項(xiàng),為公比的等比數(shù)列,所以,故選:C3、C【解析】設(shè)點(diǎn)的坐標(biāo)為,根據(jù),點(diǎn)到直線的距離為,聯(lián)立方程組即可求解.【詳解】解:設(shè)點(diǎn)的坐標(biāo)為,線段的中點(diǎn)的坐標(biāo)為,,∴的垂直平分線方程為,即,∵點(diǎn)在直線上,∴,又點(diǎn)到直線:的距離為,∴,即,聯(lián)立可得、或、,∴所求點(diǎn)的坐標(biāo)為或,故選:C4、A【解析】作出不等式對應(yīng)的平面區(qū)域,利用線性規(guī)劃的知識,通過平移即可求出的最大值.【詳解】作出可行域如圖所示,由可知,此直線可用由直線平移得到,求的最大值,即直線的截距最大,當(dāng)直線過直線的交點(diǎn)時取最大值,即故選:5、B【解析】依題意該程序框圖是統(tǒng)計這12名青少年視力小于等于的人數(shù),結(jié)合莖葉圖判斷可得;【詳解】解:根據(jù)程序框圖可知,該程序框圖是統(tǒng)計這12名青少年視力小于等于的人數(shù),由莖葉圖可知視力小于等于的有5人,故選:B6、C【解析】由復(fù)數(shù)的除法運(yùn)算可得答案.【詳解】由題得,所以復(fù)數(shù)z的虛部為-3.故選:C.7、A【解析】由,當(dāng)三點(diǎn)共線時,取得最值【詳解】設(shè)是橢圓的右焦點(diǎn),則又因?yàn)?,,所以,則故選:A8、D【解析】由題,由于過拋物線上一點(diǎn)的直線與直線垂直相交于點(diǎn),可得,又,故,所以的坐標(biāo)為,由余弦定理可得.故選:D.考點(diǎn):拋物線的定義、余弦定理【點(diǎn)睛】本題主要考查拋物線的定義與性質(zhì),考查學(xué)生的計算能力,屬于中檔題9、C【解析】先把拋物線方程化為標(biāo)準(zhǔn)方程,求出即可求解【詳解】由,有,可得,拋物線的焦點(diǎn)坐標(biāo)為故選:C10、D【解析】根據(jù)程序框圖分別計算小李和小張托運(yùn)行李的費(fèi)用,再求和得出答案.【詳解】由程序框圖可知,當(dāng)時,元;當(dāng)時,元,所以這兩人托運(yùn)行李的費(fèi)用之和為元.故選:D11、B【解析】利用反證法設(shè),,都大于,結(jié)合基本不等式即可得出結(jié)論.【詳解】設(shè),,都大于,則,由于,故,利用基本不等式可得,當(dāng)且僅當(dāng)時等號成立,這與假設(shè)所得結(jié)論矛盾,故假設(shè)不成立,故下列三個數(shù),,至少有一個不大于,故選:B.12、D【解析】利用等差數(shù)列下標(biāo)和的性質(zhì)求值即可.【詳解】由等差數(shù)列下標(biāo)和性質(zhì)知:.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、##0.5【解析】根據(jù)條件概率求概率的方法即可求得答案.【詳解】設(shè)A表示“甲地每天下雨”,B表示“乙地每天下雨”,乙地每天下雨的概率為p,則,因?yàn)榧滓覂傻叵掠晗嗷オ?dú)立,所以,于是在乙地下雨的條件下,甲地也下雨的概率為.故答案為:.14、-【解析】由雙曲線的方程可得,的坐標(biāo),設(shè)的坐標(biāo),代入雙曲線的方程可得的橫縱坐標(biāo)的關(guān)系,求出直線,的方程,令,分別求出,的縱坐標(biāo),求出的表達(dá)式,整理可得為定值【詳解】由雙曲線的方程可得,,設(shè),則,可得,直線的方程為:,令,則,可得,直線的方程為,令,可得,即,∴,,,故答案為:-另解:雙曲線方程化為,只是將的替換為-,故答案也是只需將中的替換為-即可.故答案為:-.15、##【解析】首先求得的導(dǎo)數(shù),由導(dǎo)數(shù)的幾何意義可得切線的斜率.【詳解】因?yàn)楹瘮?shù)的導(dǎo)數(shù)為,所以可得在處的切線斜率,故答案為:16、①②【解析】以甲乙獲勝概率是否均為來判斷游戲是否公平,并以此來判斷①的正確性;以頻率和概率的關(guān)系來判斷②③的正確性.【詳解】①中:甲乙二人玩勝負(fù)游戲:每人一次拋擲兩枚質(zhì)地均勻的硬幣,可得4種可能的結(jié)果:(正,正),(正,反),(反,正),(反,反)則“同時出現(xiàn)正面或反面”的概率為,“一個正面、一個反面”的概率為即甲乙二人獲勝的概率均為,那么這個游戲是公平的.判斷正確;②中:“擲一枚骰子出現(xiàn)三點(diǎn)”是一個隨機(jī)事件,當(dāng)拋擲次數(shù)很大時,此事件發(fā)生的頻率會穩(wěn)定于其概率值,故此事件發(fā)生的頻率接近其概率.判斷正確;③中:氣象預(yù)報1日—30日的下雨概率是,那么1日—30日每天下雨的概率均是,每天都有可能下雨也可能不下雨,故1日—30日中出現(xiàn)下雨的天數(shù)是隨機(jī)的,可能是0天,也可能是1天、2天、3天……,不一定是6天.判斷錯誤.故答案為:①②三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)存在,點(diǎn)與點(diǎn)重合.【解析】(1)證明出,利用面面垂直的性質(zhì)可證得結(jié)論成立;(2)以為坐標(biāo)原點(diǎn),為軸,為軸,過垂直于平面的直線為軸,建立空間直角坐標(biāo)系,易知軸在平面內(nèi),分析可知,設(shè)點(diǎn),利用空間向量法結(jié)合同角三角函數(shù)的基本關(guān)系可得出關(guān)于的方程,解出的值,即可得出結(jié)論.【小問1詳解】證明:因?yàn)闉閳A的一條直徑,且是圓上異于、的點(diǎn),故,又因平面平面,平面平面,平面,所以平面.【小問2詳解】解:存在,理由如下:如圖,以為坐標(biāo)原點(diǎn),為軸,為軸,過垂直于平面的直線為軸,建立空間直角坐標(biāo)系,易知軸在平面內(nèi),則,,,,,,由直線平面且過點(diǎn),以及平面,得,設(shè),則,,,設(shè)平面的法向量為,則則,即,取,得,易知平面的法向量,設(shè)直線與平面所成的角為,平面與平面的夾角為,則,,由,得,即,解得,所以當(dāng)點(diǎn)與點(diǎn)重合時,直線與平面所成的角和平面與平面的夾角相等.18、(1)證明見解析(2)【解析】(1)連接CH,延長交PD于點(diǎn)K,連接BK,根據(jù)E、F、G分別為PC、BC、CD的中點(diǎn),易得,再利用線面平行的判定定理證明.(2)建立空間直角坐標(biāo),求得的坐標(biāo),平面PBC一個法向量,代入公式求解.【詳解】(1)如圖所示:連接CH,延長交PD于點(diǎn)K,連接BK,因?yàn)樵O(shè)E、F、G分別為PC、BC、CD的中點(diǎn),所以H為CK的中點(diǎn),所以,又平面平面,所以平面;(2)建立如圖所示直角坐標(biāo)系則,所以,設(shè)平面PBC一個法向量為:,則,有,令,,設(shè)直線FH與平面所成角為,所以,因?yàn)椋?【點(diǎn)睛】本題主要考查線面平行的判定定理,線面角的向量求法,還考查了轉(zhuǎn)化化歸的思想和邏輯推理,運(yùn)算求解的能力,屬于中檔題.19、(1)(2)是,0【解析】(1)根據(jù)題意,設(shè)拋物線的方程為:,則,,進(jìn)而根據(jù)得,進(jìn)而得答案;(2)直線的方程為,進(jìn)而聯(lián)立方程,結(jié)合韋達(dá)定理與向量數(shù)量積運(yùn)算化簡整理即可得答案.【小問1詳解】解:由題意,設(shè)拋物線的方程為:,所以點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,因?yàn)椋?,即,解?所以拋物線的方程為:【小問2詳解】解:設(shè)直線的方程為,則聯(lián)立方程得,所以,,因?yàn)椋?所以為定值.20、(1)證明見解析(2)證明見解析【解析】(1)設(shè)直線方程為,聯(lián)立拋物線方程用韋達(dá)定理可得;(2)借助(1)中結(jié)論可得各點(diǎn)縱坐標(biāo)之積,進(jìn)而得到F、T、Q三點(diǎn)橫坐標(biāo)關(guān)系,然后可證.【小問1詳解】顯然過T的直線斜率不為0,設(shè)方程為,聯(lián)立,消元得到,.【小問2詳解】由(1)設(shè),因?yàn)锳P與BQ均過T(t,0)點(diǎn),可知,又AB過F點(diǎn),所以,如圖:,,設(shè)M(n,0),由(1)類比可得.,且,成等比數(shù)列.21、(1);(2).【解析】(1)根據(jù)已知求出即得橢圓的方程;(2)設(shè)l的方程為,,,聯(lián)立直線和橢圓的方程得到韋達(dá)定理,根據(jù)得到,即得直線l的方程.【小問1詳解】解:橢圓的焦距是4,所以焦點(diǎn)坐標(biāo)是,.因?yàn)辄c(diǎn)在G上,所以,所以,.所以橢圓G的方程是.【小問2詳解】解:顯然直線l不垂直于x軸,可設(shè)l的方程為,,,將直線l的方程代入橢圓G的方程,得,則,.因?yàn)?,所以?/p>
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年雙鴨山道路貨運(yùn)從業(yè)資格證模擬考試下載什么軟件
- 中國無鹵阻燃絕緣熱縮套管項(xiàng)目投資可行性研究報告
- 上海外國語大學(xué)《實(shí)驗(yàn)設(shè)計與分析》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025商業(yè)銀行借款合同范本模板
- 不良事件分析報告范文
- 申請報告書格式范文
- 大學(xué)讀書報告范文
- 課題申報書:高校與地方行業(yè)企業(yè)合作新機(jī)制研究
- 課題申報書:多源政民互動數(shù)據(jù)融合的風(fēng)險事件情景推演與協(xié)同治理研究
- 上海杉達(dá)學(xué)院《非法干擾、擾亂行為》2023-2024學(xué)年第一學(xué)期期末試卷
- 河南省南陽市鄧州市2023-2024學(xué)年七年級上學(xué)期期末數(shù)學(xué)試題(含答案)
- 影視基礎(chǔ)理論基礎(chǔ)知識
- 國際貿(mào)易理論期末考試試卷
- 《測繪管理法律與法規(guī)》課件-測繪標(biāo)準(zhǔn)化
- 《沃森克里克》課件
- 風(fēng)險企業(yè)監(jiān)測方案
- 基礎(chǔ)團(tuán)務(wù)知識培訓(xùn)
- 呼吸科主任述職報告
- 老年人健康管理測試試題(兩套題-有答案)
- 家庭安全用電試題及答案
- 內(nèi)部承包合同補(bǔ)充協(xié)議書
評論
0/150
提交評論