2025屆湖北省襄陽第四中學數(shù)學高三上期末復習檢測試題含解析_第1頁
2025屆湖北省襄陽第四中學數(shù)學高三上期末復習檢測試題含解析_第2頁
2025屆湖北省襄陽第四中學數(shù)學高三上期末復習檢測試題含解析_第3頁
2025屆湖北省襄陽第四中學數(shù)學高三上期末復習檢測試題含解析_第4頁
2025屆湖北省襄陽第四中學數(shù)學高三上期末復習檢測試題含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆湖北省襄陽第四中學數(shù)學高三上期末復習檢測試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設,分別是橢圓的左、右焦點,過的直線交橢圓于,兩點,且,,則橢圓的離心率為()A. B. C. D.2.對兩個變量進行回歸分析,給出如下一組樣本數(shù)據(jù):,,,,下列函數(shù)模型中擬合較好的是()A. B. C. D.3.若為虛數(shù)單位,則復數(shù)在復平面上對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.如圖,內接于圓,是圓的直徑,,則三棱錐體積的最大值為()A. B. C. D.5.設,滿足約束條件,若的最大值為,則的展開式中項的系數(shù)為()A.60 B.80 C.90 D.1206.已知某幾何體的三視圖如右圖所示,則該幾何體的體積為()A.3 B. C. D.7.已知雙曲線:的焦點為,,且上點滿足,,,則雙曲線的離心率為A. B. C. D.58.某校8位學生的本次月考成績恰好都比上一次的月考成績高出50分,則以該8位學生這兩次的月考成績各自組成樣本,則這兩個樣本不變的數(shù)字特征是()A.方差 B.中位數(shù) C.眾數(shù) D.平均數(shù)9.“學習強國”學習平臺是由中宣部主管,以深入學習宣傳新時代中國特色社會主義思想為主要內容,立足全體黨員?面向全社會的優(yōu)質平臺,現(xiàn)日益成為老百姓了解國家動態(tài)?緊跟時代脈搏的熱門?該款軟件主要設有“閱讀文章”?“視聽學習”兩個學習模塊和“每日答題”?“每周答題”?“專項答題”?“挑戰(zhàn)答題”四個答題模塊?某人在學習過程中,“閱讀文章”不能放首位,四個答題板塊中有且僅有三個答題板塊相鄰的學習方法有()A.60 B.192 C.240 D.43210.明代數(shù)學家程大位(1533~1606年),有感于當時籌算方法的不便,用其畢生心血寫出《算法統(tǒng)宗》,可謂集成計算的鼻祖.如圖所示的程序框圖的算法思路源于其著作中的“李白沽酒”問題.執(zhí)行該程序框圖,若輸出的的值為,則輸入的的值為()A. B. C. D.11.已知函數(shù),則下列結論錯誤的是()A.函數(shù)的最小正周期為πB.函數(shù)的圖象關于點對稱C.函數(shù)在上單調遞增D.函數(shù)的圖象可由的圖象向左平移個單位長度得到12.《九章算術》有如下問題:“今有金箠,長五尺,斬本一尺,重四斤;斬末一尺,重二斤,問次一尺各重幾何?”意思是:“現(xiàn)在有一根金箠,長五尺在粗的一端截下一尺,重斤;在細的一端截下一尺,重斤,問各尺依次重多少?”按這一問題的顆設,假設金箠由粗到細各尺重量依次成等差數(shù)列,則從粗端開始的第二尺的重量是()A.斤 B.斤 C.斤 D.斤二、填空題:本題共4小題,每小題5分,共20分。13.已知等比數(shù)列的各項均為正數(shù),,則的值為________.14.在邊長為2的正三角形中,,則的取值范圍為______.15.若函數(shù)為偶函數(shù),則________.16.設數(shù)列的前項和為,且對任意正整數(shù),都有,則___三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某市為了鼓勵市民節(jié)約用電,實行“階梯式”電價,將該市每戶居民的月用電量劃分為三檔,月用電量不超過度的部分按元/度收費,超過度但不超過度的部分按元/度收費,超過度的部分按元/度收費.(I)求某戶居民用電費用(單位:元)關于月用電量(單位:度)的函數(shù)解析式;(Ⅱ)為了了解居民的用電情況,通過抽樣,獲得了今年1月份戶居民每戶的用電量,統(tǒng)計分析后得到如圖所示的頻率分布直方圖,若這戶居民中,今年1月份用電費用不超過元的占,求,的值;(Ⅲ)在滿足(Ⅱ)的條件下,若以這戶居民用電量的頻率代替該月全市居民用戶用電量的概率,且同組中的數(shù)據(jù)用該組區(qū)間的中點代替,記為該居民用戶1月份的用電費用,求的分布列和數(shù)學期望.18.(12分)已知數(shù)列,滿足.(1)求數(shù)列,的通項公式;(2)分別求數(shù)列,的前項和,.19.(12分)已知不等式對于任意的恒成立.(1)求實數(shù)m的取值范圍;(2)若m的最大值為M,且正實數(shù)a,b,c滿足.求證.20.(12分)在數(shù)列中,已知,且,.(1)求數(shù)列的通項公式;(2)設,數(shù)列的前項和為,證明:.21.(12分)已知函數(shù)是減函數(shù).(1)試確定a的值;(2)已知數(shù)列,求證:.22.(10分)已知橢圓:()的左、右焦點分別為和,右頂點為,且,短軸長為.(1)求橢圓的方程;(2)若過點作垂直軸的直線,點為直線上縱坐標不為零的任意一點,過作的垂線交橢圓于點和,當時,求此時四邊形的面積.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

根據(jù)表示出線段長度,由勾股定理,解出每條線段的長度,再由勾股定理構造出關系,求出離心率.【詳解】設,則由橢圓的定義,可以得到,在中,有,解得在中,有整理得,故選C項.【點睛】本題考查幾何法求橢圓離心率,是求橢圓離心率的一個常用方法,通過幾何關系,構造出關系,得到離心率.屬于中檔題.2、D【解析】

作出四個函數(shù)的圖象及給出的四個點,觀察這四個點在靠近哪個曲線.【詳解】如圖,作出A,B,C,D中四個函數(shù)圖象,同時描出題中的四個點,它們在曲線的兩側,與其他三個曲線都離得很遠,因此D是正確選項,故選:D.【點睛】本題考查回歸分析,擬合曲線包含或靠近樣本數(shù)據(jù)的點越多,說明擬合效果好.3、D【解析】

根據(jù)復數(shù)的運算,化簡得到,再結合復數(shù)的表示,即可求解,得到答案.【詳解】由題意,根據(jù)復數(shù)的運算,可得,所對應的點為位于第四象限.故選D.【點睛】本題主要考查了復數(shù)的運算,以及復數(shù)的幾何意義,其中解答中熟記復數(shù)的運算法則,準確化簡復數(shù)為代數(shù)形式是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.4、B【解析】

根據(jù)已知證明平面,只要設,則,從而可得體積,利用基本不等式可得最大值.【詳解】因為,所以四邊形為平行四邊形.又因為平面,平面,所以平面,所以平面.在直角三角形中,,設,則,所以,所以.又因為,當且僅當,即時等號成立,所以.故選:B.【點睛】本題考查求棱錐體積的最大值.解題方法是:首先證明線面垂直同,得棱錐的高,然后設出底面三角形一邊長為,用建立體積與邊長的函數(shù)關系,由基本不等式得最值,或由函數(shù)的性質得最值.5、B【解析】

畫出可行域和目標函數(shù),根據(jù)平移得到,再利用二項式定理計算得到答案.【詳解】如圖所示:畫出可行域和目標函數(shù),,即,故表示直線與截距的倍,根據(jù)圖像知:當時,的最大值為,故.展開式的通項為:,取得到項的系數(shù)為:.故選:.【點睛】本題考查了線性規(guī)劃求最值,二項式定理,意在考查學生的計算能力和綜合應用能力.6、B【解析】由三視圖知:幾何體是直三棱柱消去一個三棱錐,如圖:

直三棱柱的體積為,消去的三棱錐的體積為,

∴幾何體的體積,故選B.點睛:本題考查了由三視圖求幾何體的體積,根據(jù)三視圖判斷幾何體的形狀及相關幾何量的數(shù)據(jù)是解答此類問題的關鍵;幾何體是直三棱柱消去一個三棱錐,結合直觀圖分別求出直三棱柱的體積和消去的三棱錐的體積,相減可得幾何體的體積.7、D【解析】

根據(jù)雙曲線定義可以直接求出,利用勾股定理可以求出,最后求出離心率.【詳解】依題意得,,,因此該雙曲線的離心率.【點睛】本題考查了雙曲線定義及雙曲線的離心率,考查了運算能力.8、A【解析】

通過方差公式分析可知方差沒有改變,中位數(shù)、眾數(shù)和平均數(shù)都發(fā)生了改變.【詳解】由題可知,中位數(shù)和眾數(shù)、平均數(shù)都有變化.本次和上次的月考成績相比,成績和平均數(shù)都增加了50,所以沒有改變,根據(jù)方差公式可知方差不變.故選:A【點睛】本題主要考查樣本的數(shù)字特征,意在考查學生對這些知識的理解掌握水平.9、C【解析】

四個答題板塊中選三個捆綁在一起,和另外一個答題板塊用插入法.注意按“閱讀文章”分類.【詳解】四個答題板塊中選三個捆綁在一起,和另外一個答題板塊用插入法,由于“閱讀文章”不能放首位,因此不同的方法數(shù)為.故選:C.【點睛】本題考查排列組合的應用,考查捆綁法和插入法求解排列問題.對相鄰問題用捆綁法,不相鄰問題用插入法是解決這類問題的常用方法.10、C【解析】

根據(jù)程序框圖依次計算得到答案.【詳解】,;,;,;,;,此時不滿足,跳出循環(huán),輸出結果為,由題意,得.故選:【點睛】本題考查了程序框圖的計算,意在考查學生的理解能力和計算能力.11、D【解析】

由可判斷選項A;當時,可判斷選項B;利用整體換元法可判斷選項C;可判斷選項D.【詳解】由題知,最小正周期,所以A正確;當時,,所以B正確;當時,,所以C正確;由的圖象向左平移個單位,得,所以D錯誤.故選:D.【點睛】本題考查余弦型函數(shù)的性質,涉及到周期性、對稱性、單調性以及圖象變換后的解析式等知識,是一道中檔題.12、B【解析】

依題意,金箠由粗到細各尺重量構成一個等差數(shù)列,則,由此利用等差數(shù)列性質求出結果.【詳解】設金箠由粗到細各尺重量依次所成得等差數(shù)列為,設首項,則,公差,.故選B【點睛】本題考查了等差數(shù)列的通項公式,考查了推理能力與計算能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

運用等比數(shù)列的通項公式,即可解得.【詳解】解:,,,,,,,,,,,.故答案為:.【點睛】本題考查等比數(shù)列的通項公式及應用,考查計算能力,屬于基礎題.14、【解析】

建立直角坐標系,依題意可求得,而,,,故可得,且,由此構造函數(shù),,利用二次函數(shù)的性質即可求得取值范圍.【詳解】建立如圖所示的平面直角坐標系,則,,,設,,,,根據(jù),即,,,則,,即,,,則,,所以,,,,,,且,故,設,,易知二次函數(shù)的對稱軸為,故函數(shù)在,上的最大值為,最小值為,故的取值范圍為.故答案為:.【點睛】本題考查平面向量數(shù)量積的坐標運算,考查函數(shù)與方程思想、轉化與化歸思想,考查邏輯推理能力、運算求解能力,求解時注意通過設元、消元,將問題轉化為元二次函數(shù)的值域問題.15、【解析】

二次函數(shù)為偶函數(shù)說明一次項系數(shù)為0,求得參數(shù),將代入表達式即可求解【詳解】由為偶函數(shù),知其一次項的系數(shù)為0,所以,,所以,故答案為:-5【點睛】本題考查由奇偶性求解參數(shù),求函數(shù)值,屬于基礎題16、【解析】

利用行列式定義,得到與的關系,賦值,即可求出結果?!驹斀狻坑?,令,得,解得?!军c睛】本題主要考查行列式定義的應用。三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2),;(3)見解析.【解析】試題分析:(1)根據(jù)題意分段表示出函數(shù)解析式;(2)將代入(1)中函數(shù)解析式可得,即,根據(jù)頻率分布直方圖可分別得到關于的方程,即可得;(3)取每段中點值作為代表的用電量,分別算出對應的費用值,對應得出每組電費的概率,即可得到的概率分布列,然后求出的期望.試題解析:(1)當時,;當當時,;當當時,,所以與之間的函數(shù)解析式為.(2)由(1)可知,當時,,則,結合頻率分布直方圖可知,∴,(3)由題意可知可取50,150,250,350,450,550,當時,,∴,當時,,∴,當時,,∴,當時,,∴,當時,,∴,當時,,∴,故的概率分布列為25751402203104100.10.20.30.20.150.05所以隨機變量的數(shù)學期望18、(1)(2);【解析】

(1),,可得為公比為2的等比數(shù)列,可得為公差為1的等差數(shù)列,再算出,的通項公式,解方程組即可;(2)利用分組求和法解決.【詳解】(1)依題意有又.可得數(shù)列為公比為2的等比數(shù)列,為公差為1的等差數(shù)列,由,得解得故數(shù)列,的通項公式分別為.(2),.【點睛】本題考查利用遞推公式求數(shù)列的通項公式以及分組求和法求數(shù)列的前n項和,考查學生的計算能力,是一道中檔題.19、(1)(2)證明見解析【解析】

(1)法一:,,得,則,由此可得答案;法二:由題意,令,易知是偶函數(shù),且時為增函數(shù),由此可得出答案;(2)由(1)知,,即,結合“1”的代換,利用基本不等式即可證明結論.【詳解】解:(1)法一:(當且僅當時取等號),又(當且僅當時取等號),所以(當且僅當時取等號),由題意得,則,解得,故的取值范圍是;法二:因為對于任意恒有成立,即,令,易知是偶函數(shù),且時為增函數(shù),所以,即,則,解得,故的取值范圍是;(2)由(1)知,,即,∴,故不等式成立.【點睛】本題主要考查絕對值不等式的恒成立問題,考查基本不等式的應用,屬于中檔題.20、(1);(2)見解析.【解析】

(1)由已知變形得到,從而是等差數(shù)列,然后利用等差數(shù)列的通項公式計算即可;(2)先求出數(shù)列的通項,再利用裂項相消法求出即可.【詳解】(1)由已知,,即,又,則數(shù)列是以1為首項3為公差的等差數(shù)列,所以,即.(2)因為,則,所以,又是遞增數(shù)列,所以,綜上,.【點睛】本題考查由遞推公式求數(shù)列通項公式、裂項相消法求數(shù)列的和,考查學生的計算能力,是一道基礎題.21、(Ⅰ)(Ⅱ)見證明【解析】

(Ⅰ)求導得,由是減函數(shù)得,對任意的,都有恒成立,構造函數(shù),通過求導判斷它的單調性,令其最大值

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論