2023-2024學(xué)年山東省寧陽第四中學(xué)高三數(shù)學(xué)試題綜合練習(xí)(四)含附加題_第1頁
2023-2024學(xué)年山東省寧陽第四中學(xué)高三數(shù)學(xué)試題綜合練習(xí)(四)含附加題_第2頁
2023-2024學(xué)年山東省寧陽第四中學(xué)高三數(shù)學(xué)試題綜合練習(xí)(四)含附加題_第3頁
2023-2024學(xué)年山東省寧陽第四中學(xué)高三數(shù)學(xué)試題綜合練習(xí)(四)含附加題_第4頁
2023-2024學(xué)年山東省寧陽第四中學(xué)高三數(shù)學(xué)試題綜合練習(xí)(四)含附加題_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年山東省寧陽第四中學(xué)高三數(shù)學(xué)試題綜合練習(xí)(四)含附加題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè)命題p:>1,n2>2n,則p為()A. B.C. D.2.已知若在定義域上恒成立,則的取值范圍是()A. B. C. D.3.甲、乙、丙三人參加某公司的面試,最終只有一人能夠被該公司錄用,得到面試結(jié)果以后甲說:丙被錄用了;乙說:甲被錄用了;丙說:我沒被錄用.若這三人中僅有一人說法錯誤,則下列結(jié)論正確的是()A.丙被錄用了 B.乙被錄用了 C.甲被錄用了 D.無法確定誰被錄用了4.對于函數(shù),定義滿足的實數(shù)為的不動點,設(shè),其中且,若有且僅有一個不動點,則的取值范圍是()A.或 B.C.或 D.5.在直角坐標(biāo)系中,已知A(1,0),B(4,0),若直線x+my﹣1=0上存在點P,使得|PA|=2|PB|,則正實數(shù)m的最小值是()A. B.3 C. D.6.集合,則集合的真子集的個數(shù)是A.1個 B.3個 C.4個 D.7個7.已知向量,是單位向量,若,則()A. B. C. D.8.設(shè)函數(shù),則函數(shù)的圖像可能為()A. B. C. D.9.已知正四面體的棱長為,是該正四面體外接球球心,且,,則()A. B.C. D.10.等差數(shù)列中,已知,且,則數(shù)列的前項和中最小的是()A.或 B. C. D.11.已知函數(shù)(其中,,)的圖象關(guān)于點成中心對稱,且與點相鄰的一個最低點為,則對于下列判斷:①直線是函數(shù)圖象的一條對稱軸;②點是函數(shù)的一個對稱中心;③函數(shù)與的圖象的所有交點的橫坐標(biāo)之和為.其中正確的判斷是()A.①② B.①③ C.②③ D.①②③12.的展開式中各項系數(shù)的和為2,則該展開式中常數(shù)項為A.-40 B.-20 C.20 D.40二、填空題:本題共4小題,每小題5分,共20分。13.直線xsinα+y+2=0的傾斜角的取值范圍是________________.14.如圖,半圓的直徑AB=6,O為圓心,C為半圓上不同于A、B的任意一點,若P為半徑OC上的動點,則的最小值為.15.在四棱錐中,是邊長為的正三角形,為矩形,,.若四棱錐的頂點均在球的球面上,則球的表面積為_____.16.正方形的邊長為2,圓內(nèi)切于正方形,為圓的一條動直徑,點為正方形邊界上任一點,則的取值范圍是______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)若,且(1)求的最小值;(2)是否存在,使得?并說明理由.18.(12分)已知的內(nèi)角,,的對邊分別為,,,且.(1)求;(2)若的面積為,,求的周長.19.(12分)如圖,四棱錐中,平面平面,若,四邊形是平行四邊形,且.(Ⅰ)求證:;(Ⅱ)若點在線段上,且平面,,,求二面角的余弦值.20.(12分)已知函數(shù).(Ⅰ)若是第二象限角,且,求的值;(Ⅱ)求函數(shù)的定義域和值域.21.(12分)已知數(shù)列滿足:,,且對任意的都有,(Ⅰ)證明:對任意,都有;(Ⅱ)證明:對任意,都有;(Ⅲ)證明:.22.(10分)已知函數(shù)(1)若,不等式的解集;(2)若,求實數(shù)的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】根據(jù)命題的否定,可以寫出:,所以選C.2.C【解析】

先解不等式,可得出,求出函數(shù)的值域,由題意可知,不等式在定義域上恒成立,可得出關(guān)于的不等式,即可解得實數(shù)的取值范圍.【詳解】,先解不等式.①當(dāng)時,由,得,解得,此時;②當(dāng)時,由,得.所以,不等式的解集為.下面來求函數(shù)的值域.當(dāng)時,,則,此時;當(dāng)時,,此時.綜上所述,函數(shù)的值域為,由于在定義域上恒成立,則不等式在定義域上恒成立,所以,,解得.因此,實數(shù)的取值范圍是.故選:C.【點睛】本題考查利用函數(shù)不等式恒成立求參數(shù),同時也考查了分段函數(shù)基本性質(zhì)的應(yīng)用,考查分類討論思想的應(yīng)用,屬于中等題.3.C【解析】

假設(shè)若甲被錄用了,若乙被錄用了,若丙被錄用了,再逐一判斷即可.【詳解】解:若甲被錄用了,則甲的說法錯誤,乙,丙的說法正確,滿足題意,若乙被錄用了,則甲、乙的說法錯誤,丙的說法正確,不符合題意,若丙被錄用了,則乙、丙的說法錯誤,甲的說法正確,不符合題意,綜上可得甲被錄用了,故選:C.【點睛】本題考查了邏輯推理能力,屬基礎(chǔ)題.4.C【解析】

根據(jù)不動點的定義,利用換底公式分離參數(shù)可得;構(gòu)造函數(shù),并討論的單調(diào)性與最值,畫出函數(shù)圖象,即可確定的取值范圍.【詳解】由得,.令,則,令,解得,所以當(dāng)時,,則在內(nèi)單調(diào)遞增;當(dāng)時,,則在內(nèi)單調(diào)遞減;所以在處取得極大值,即最大值為,則的圖象如下圖所示:由有且僅有一個不動點,可得得或,解得或.故選:C【點睛】本題考查了函數(shù)新定義的應(yīng)用,由導(dǎo)數(shù)確定函數(shù)的單調(diào)性與最值,分離參數(shù)法與構(gòu)造函數(shù)方法的應(yīng)用,屬于中檔題.5.D【解析】

設(shè)點,由,得關(guān)于的方程.由題意,該方程有解,則,求出正實數(shù)m的取值范圍,即求正實數(shù)m的最小值.【詳解】由題意,設(shè)點.,即,整理得,則,解得或..故選:.【點睛】本題考查直線與方程,考查平面內(nèi)兩點間距離公式,屬于中檔題.6.B【解析】

由題意,結(jié)合集合,求得集合,得到集合中元素的個數(shù),即可求解,得到答案.【詳解】由題意,集合,則,所以集合的真子集的個數(shù)為個,故選B.【點睛】本題主要考查了集合的運算和集合中真子集的個數(shù)個數(shù)的求解,其中作出集合的運算,得到集合,再由真子集個數(shù)的公式作出計算是解答的關(guān)鍵,著重考查了推理與運算能力.7.C【解析】

設(shè),根據(jù)題意求出的值,代入向量夾角公式,即可得答案;【詳解】設(shè),,是單位向量,,,,聯(lián)立方程解得:或當(dāng)時,;當(dāng)時,;綜上所述:.故選:C.【點睛】本題考查向量的模、夾角計算,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力、運算求解能力,求解時注意的兩種情況.8.B【解析】

根據(jù)函數(shù)為偶函數(shù)排除,再計算排除得到答案.【詳解】定義域為:,函數(shù)為偶函數(shù),排除,排除故選【點睛】本題考查了函數(shù)圖像,通過函數(shù)的單調(diào)性,奇偶性,特殊值排除選項是常用的技巧.9.A【解析】

如圖設(shè)平面,球心在上,根據(jù)正四面體的性質(zhì)可得,根據(jù)平面向量的加法的幾何意義,重心的性質(zhì),結(jié)合已知求出的值.【詳解】如圖設(shè)平面,球心在上,由正四面體的性質(zhì)可得:三角形是正三角形,,,在直角三角形中,,,,,,因為為重心,因此,則,因此,因此,則,故選A.【點睛】本題考查了正四面體的性質(zhì),考查了平面向量加法的幾何意義,考查了重心的性質(zhì),屬于中檔題.10.C【解析】

設(shè)公差為,則由題意可得,解得,可得.令

,可得

當(dāng)時,,當(dāng)時,,由此可得數(shù)列前項和中最小的.【詳解】解:等差數(shù)列中,已知,且,設(shè)公差為,

則,解得

,.

,可得,故當(dāng)時,,當(dāng)時,,

故數(shù)列前項和中最小的是.故選:C.【點睛】本題主要考查等差數(shù)列的性質(zhì),等差數(shù)列的通項公式的應(yīng)用,屬于中檔題.11.C【解析】分析:根據(jù)最低點,判斷A=3,根據(jù)對稱中心與最低點的橫坐標(biāo)求得周期T,再代入最低點可求得解析式為,依次判斷各選項的正確與否.詳解:因為為對稱中心,且最低點為,所以A=3,且由所以,將帶入得,所以由此可得①錯誤,②正確,③當(dāng)時,,所以與有6個交點,設(shè)各個交點坐標(biāo)依次為,則,所以③正確所以選C點睛:本題考查了根據(jù)條件求三角函數(shù)的解析式,通過求得的解析式進(jìn)一步研究函數(shù)的性質(zhì),屬于中檔題.12.D【解析】令x=1得a=1.故原式=.的通項,由5-2r=1得r=2,對應(yīng)的常數(shù)項=80,由5-2r=-1得r=3,對應(yīng)的常數(shù)項=-40,故所求的常數(shù)項為40,選D解析2.用組合提取法,把原式看做6個因式相乘,若第1個括號提出x,從余下的5個括號中選2個提出x,選3個提出;若第1個括號提出,從余下的括號中選2個提出,選3個提出x.故常數(shù)項==-40+80=40二、填空題:本題共4小題,每小題5分,共20分。13.【解析】因為sinα∈[-1,1],所以-sinα∈[-1,1],所以已知直線的斜率范圍為[-1,1],由傾斜角與斜率關(guān)系得傾斜角范圍是.答案:14..【解析】.15.【解析】

做中點,的中點,連接,由已知條件可求出,運用余弦定理可求,從而在平面中建立坐標(biāo)系,則以及的外接圓圓心為和長方形的外接圓圓心為在該平面坐標(biāo)系的坐標(biāo)可求,通過球心滿足,即可求出的坐標(biāo),從而可求球的半徑,進(jìn)而能求出球的表面積.【詳解】解:如圖做中點,的中點,連接,由題意知,則設(shè)的外接圓圓心為,則在直線上且設(shè)長方形的外接圓圓心為,則在上且.設(shè)外接球的球心為在中,由余弦定理可知,.在平面中,以為坐標(biāo)原點,以所在直線為軸,以過點垂直于軸的直線為軸,如圖建立坐標(biāo)系,由題意知,在平面中且設(shè),則,因為,所以解得.則所以球的表面積為.故答案為:.【點睛】本題考查了幾何體外接球的問題,考查了球的表面積.關(guān)于幾何體的外接球的做題思路有:一是通過將幾何體補(bǔ)充到長方體中,將幾何體的外接球等同于長方體的外接球,求出體對角線即為直徑,但這種方法適用性較差;二是通過球的球心與各面外接圓圓心的連線與該平面垂直,設(shè)半徑列方程求解;三是通過空間、平面坐標(biāo)系進(jìn)行求解.16.【解析】

根據(jù)向量關(guān)系表示,只需求出的取值范圍即可得解.【詳解】由題可得:,故答案為:【點睛】此題考查求平面向量數(shù)量積的取值范圍,涉及基本運算,關(guān)鍵在于恰當(dāng)?shù)貙ο蛄窟M(jìn)行轉(zhuǎn)換,便于計算解題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1);(2)不存在.【解析】

(1)由已知,利用基本不等式的和積轉(zhuǎn)化可求,利用基本不等式可將轉(zhuǎn)化為,由不等式的傳遞性,可求的最小值;(2)由基本不等式可求的最小值為,而,故不存在.【詳解】(1)由,得,且當(dāng)時取等號.故,且當(dāng)時取等號.所以的最小值為;(2)由(1)知,.由于,從而不存在,使得成立.【考點定位】基本不等式.18.(1);(2).【解析】

(1)利用正弦定理將目標(biāo)式邊化角,結(jié)合倍角公式,即可整理化簡求得結(jié)果;(2)由面積公式,可以求得,再利用余弦定理,即可求得,結(jié)合即可求得周長.【詳解】(1)由題設(shè)得.由正弦定理得∵∴,所以或.當(dāng),(舍)故,解得.(2),從而.由余弦定理得.解得.∴.故三角形的周長為.【點睛】本題考查由余弦定理解三角形,涉及面積公式,正弦的倍角公式,應(yīng)用正弦定理將邊化角,屬綜合性基礎(chǔ)題.19.(Ⅰ)見解析(Ⅱ)【解析】

(Ⅰ)推導(dǎo)出BC⊥CE,從而EC⊥平面ABCD,進(jìn)而EC⊥BD,再由BD⊥AE,得BD⊥平面AEC,從而BD⊥AC,進(jìn)而四邊形ABCD是菱形,由此能證明AB=AD.(Ⅱ)設(shè)AC與BD的交點為G,推導(dǎo)出EC//FG,取BC的中點為O,連結(jié)OD,則OD⊥BC,以O(shè)為坐標(biāo)原點,以過點O且與CE平行的直線為x軸,以BC為y軸,OD為z軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角A-BF-D的余弦值.【詳解】(Ⅰ)證明:,即,因為平面平面,所以平面,所以,因為,所以平面,所以,因為四邊形是平行四邊形,所以四邊形是菱形,故;解法一:(Ⅱ)設(shè)與的交點為,因為平面,平面平面于,所以,因為是中點,所以是的中點,因為,取的中點為,連接,則,因為平面平面,所以面,以為坐標(biāo)原點,以過點且與平行的直線為軸,以所在直線為軸,以所在直線為軸建立空間直角坐標(biāo)系.不妨設(shè),則,,,,,,,設(shè)平面的法向量,則,取,同理可得平面的法向量,設(shè)平面與平面的夾角為,因為,所以二面角的余弦值為.解法二:(Ⅱ)設(shè)與的交點為,因為平面,平面平面于,所以,因為是中點,所以是的中點,因為,,所以平面,所以,取中點,連接、,因為,所以,故平面,所以,即是二面角的平面角,不妨設(shè),因為,,在中,,所以,所以二面角的余弦值為.【點睛】本題考查求空間角中的二面角的余弦值,還考查由空間中線面關(guān)系進(jìn)而證明線線相等,屬于中檔題.20.(Ⅰ)(Ⅱ)函數(shù)的定義域為,值域為【解析】

(1)由為第二象限角及的值,利用同角三角函數(shù)間的基本關(guān)系求出及的值,再代入中即可得到結(jié)果.(2)函數(shù)解析式利用二倍角和輔助角公式將化為一個角的正弦函數(shù),根據(jù)的范圍,即可得到函數(shù)值域.【詳解】解:(1)因為是第二象限角,且,所以.所以,所以.(2)函數(shù)的定義域為.化簡,得,因為,且,,所以,所以.所以函數(shù)的值域為.(注:或許有人會認(rèn)為“因為,所以”,其實不然,因為.)【點睛】本題考查同角三角函數(shù)的基本關(guān)系式,三角函數(shù)函數(shù)值求解以及定義域和值域的求解問題,涉及到利用二倍角公式和輔助角公式整理三角函數(shù)關(guān)系式的問題,意在考查學(xué)生的轉(zhuǎn)化能力和計算求解能力,屬于常考題型.21.(1)見解析(2)見解析(3)見解析【解析】分析:(1)用反證法證明,注

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論