




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
SolutionsManual–Chapter1
SolutionstoDiscussionQuestions
Dataanalyticsisdefinedastheprocessofevaluatingdata
withthepurposeofdrawingconclusionstoaddressbusinessquestions.Indeed,effectiveDataAnalyticsprovidesawaytosearchthroughlargestructuredandunstructureddatatoidentifyunknownpatternsorrelationships.
Auniversitymightlearnfromtheanalyzingthedemographicsofitscurrentsetofstudentsinordertoattractitsfuturestudentrecruits.Didtheycomefromcitiesorhighschoolsthatwerecloseby?Weretheirparentsalumnioftheuniversity?DidtheyscorehighoncertainpartsoftheACT?Werethoseofferedascholarshipmorelikelytoattend,etc.?Wassocialmediaeffectiveinattractingstudents?Byanalyzingthistypeofdata,previouslyunknownpatternswillemergethatwillmakerecruitingstudentsmoreeffective.
Therearemanypotentialanswers.Forexample,Monsantomayusemathematicalandstatisticalmodelstoplotoutthebesttimestoplantbothmaleandfemaleplansandwheretoplantthemtomaximizeyield.(
/article/3221621/analytics/6-data-analytics-success-stories-an-inside-look.html#tk.cio_rs
)
Therearemanypotentialanswers.Accountantsmightusedataanalyticstolearnmoreabouttheirallowancefordoubtfulaccountsbylearningwhichcustomerspayordonotpaytheirreceivablebalancesonatimelybasis.Thiswillhelpmakeamoreaccuratebalanceofnetreceivables.
Therearemanypotentialanswers.Forexample,dataanalyticsassociatedwithfinancialreportingmayhelpaccountantsdetermineifanyoftheirinventoryobsolete?Itmayalsohelpthecompanybenchmarkonthefinancialstatementsandfinancialreportingofothersimilarcompaniesandunderstandtheiraccountingpracticestohelpinfertheirown.
Theimpactcyclesuggestsanorderof1)IdentifyingtheQuestions;2)MasteringtheData;3)Performingthetestplan;4)Addressingandrefiningresults;5)Communicatinginsightsand6)Trackingoutcomes.Thecyclestartswithaquestionandthenidentifyingdataandtestplanthatmightaddressthatquestion.Theresultsofthedataanalysisarecommunicatedandtrackedwhichmayleadtoadditional,possiblymorerefinedquestionsthatthenrestartthecycle.
Dataanalysisismosteffectivewhenaquestionisidentifiedthatneedstobeaddressed.Thatwillfocustheanalysisonwhichdataandwhichtestmethodmightbemosteffectiveinaddressingoransweringthequestion.
Masteringthedatarequiresonetoknowwhatdataisavailableandwhetheritmightbeabletohelpaddressthebusinessproblem.Weneedtoknoweverythingaboutthedata,includinghowtoaccessit,itsavailability,howreliableitis(ifthereareerrors),andwhattimeperiodsitcoverstomakesureitcoincideswiththetimingofourbusinessproblem,etc.
Alibabausestheprofilingdataapproachtoidentifypotentialcasesoffraud.Alibabahasworkedtocapturefraudsignalsdirectlyfromitsextensivedatabaseofuserbehaviorsanditsnetwork,thenanalyzestheminreal-timeusingmachinelearningtoaccuratelysortthebadusersfromthegoodones.
Facebookuseslinkpredictiontopredictarelationshipbetweentwopeoplewhenitsuggestspeoplethatonelikelyknowsduetosimilarotherfriends,highschools,collegeorworklocations,etc.
Whilesamplingisuseful,itisstilljustthat,sampling.Bylookingatallofthetransactionsandtestingtheminawaythatwillhighlighttheonesthatarethebiggestdollaritems,oraremostunusual,thatwillallowauditorstofocusonspecificitemsthatmightbeofmaterialsignificance.
Thereareseveralcorrectanswers.Onedataapproachmightberegressionanalysiswhere,givenabalanceoftotalaccountsreceivableheldbyafirm,howlongithasbeenoutstanding,iftheyhavepaiddebtsinthepastallwillhelppredicttheappropriatelevelofallowancefordoubtfulaccountsforbaddebts.
TheDebt-to-IncomeratiomightsuggesttoLendingClubthatthepersonaskingfortheloanwassimplyaskingfortoobigofaloanandtheywouldhavelittleabilitytorepayit.Thelowerthecreditscore,thelesslikelytheloaneewouldbeabletorepaytheloan.
TherearemanyotherpotentialpredictorsofwhethertheLendingClubwouldpayaloan.Hereareafewpossibilities:Whatotherdebtdotheyhave?Howmuchistheirdisposableincome?Dotheyhaveacleancriminalrecord?HavetheyhadaloanwithLendingClubbeforeanddidtheyrepayit?
SolutionstoProblems
Problem1-1
Herearethepredictiveattributesandwhethertheywouldbeapplicabletopredictingwhichloanswouldbedelinquentandwhichloanswillultimatelybefullyrepaid.
Yes/No
PredictiveAttributes
No
desc(Loandescriptionprovidedbyborrower)
Yes
dti(MonthlydebtpaymentstomonthlyincomeRatio)
Yes
grade(LCassignedloangrade)
Yes
home_ownership(valuesincludeRent,Own,Mortgage,Other)
No
next_pymnt_d(Nextscheduledpaymentdate)
No
term(Thenumberofpaymentsontheloan)
Yes
tot_cur_bal(Totalcurrentbalanceofallaccounts)
Problem1-2
PotentialattributesfromtheRejectStatsdatadictionarythatmighthelppredictloanacceptanceorrejectionincludethefollowing:
AmountRequested
Risk_Score
Debt-to-IncomeRatio
ZipCode
State(Possibly)
EmploymentLength
Problem1-3
PercentageoftotalloansrejectedthatliveinArkansas=1.219%
2,915,918populationinArkansasdividedbyUSApopulationof308,745,538=0.9444%
TheloanrejectionpercentageisgreaterthanthepercentoftheUSApopulationthatlivesinArkansas(per2010census),butisreasonablyclose.
Problem1-4
State
LoanRejection%
CA
0.13292708
TX
0.08344411
NY
0.0797736
FL
0.07688089
PA
0.04401981
IL
0.04246422
OH
0.03779744
NJ
0.03708008
GA
0.03683527
VA
0.03131478
MI
0.02718255
NC
0.02672393
MA
0.02547822
MD
0.02340048
AZ
0.02142811
MO
0.01954559
WA
0.0187585
CO
0.01812325
AL
0.0169798
CT
0.01640652
SC
0.01569535
LA
0.01450077
WI
0.01430865
MN
0.01407314
KY
0.01367649
NV
0.01275305
AR
0.01219062
OK
0.01103943
OR
0.00954581
KS
0.00862547
UT
0.00692579
WV
0.00643153
NM
0.00590939
HI
0.005756
NH
0.00551739
RI
0.00498905
DE
0.00354346
MT
0.00284933
VT
0.00250537
AK
0.00249142
DC
0.00236128
SD
0.00223887
WY
0.00220479
IN
0.00149516
MS
0.00059962
TN
0.00055003
NE
0.00022311
IA
0.00017043
ME
0.0001379
ID
8.0568E-05
ND
4.6482E-05
Theloanrejectionpercentageroughlycorrespondswiththepopulationofeachstate.However,thereisstillsubstantialvariationbetweentherejectionpercentageofeachstate.
Problem1-5
Hereisthepivottablebyriskscoregrouping:
RowLabels
CountofLoanTitle
Excellent
2931
Fair
236669
Good
83543
Poor
189621
VeryBad
145322
VeryGood
11907
GrandTotal
669993
TheExcellentcategoryhadthesmallestgroup,whereastheFairgrouphadthebiggestgroup.ArguablythereisagreaterpopulationofFair,eventhoughVeryBadhasasmallercount,itisclearlytheworstofthegroup.
Problem1-6
HereisthepivottablebyDebt-to-Income(DTI)grouping:
RowLabels
CountofAmountRequested
High
340862
Low
159464
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 橡膠制品采購居間合同范本
- 2025《稅務(wù)系統(tǒng)檢查證采購項(xiàng)目》合同
- 2025年的鐵路運(yùn)輸合同范本
- 酒店代運(yùn)營合作協(xié)議
- 工廠出租合同模
- 采購開口合同范本
- 2025建筑材料車輛運(yùn)輸合同 建筑材料車輛運(yùn)輸合同范本
- 2025中型水利樞紐工程承包合同書
- 購房協(xié)議書范本模板
- 2025年03月安徽電信傳輸局分局長公開招聘助理15人筆試歷年典型考題(歷年真題考點(diǎn))解題思路附帶答案詳解
- 北師大版八年級下冊數(shù)學(xué)全冊教案完整版教學(xué)設(shè)計(jì)
- 冷卻塔技術(shù)手冊
- 森林生態(tài)學(xué)-知識點(diǎn)整理-考研復(fù)習(xí)筆記
- 西游記 品味經(jīng)典名著導(dǎo)讀PPT
- 通信線路工程施工技術(shù)規(guī)范(新)
- 很全的禮品qq群
- 資產(chǎn)評估操作規(guī)范試行
- 馬雷軍-學(xué)校安全管理的基本知識
- 重力式碼頭工程完整施工組織設(shè)計(jì)(沉箱方案)
- (高清版)民用建筑修繕工程施工標(biāo)準(zhǔn)JGJ_T 112-2019
- 走進(jìn)高端市場鄭榮祿
評論
0/150
提交評論