會計(jì)數(shù)據(jù)分析 Solutions-Manual Chapter-1-EOC-SM-Updated_第1頁
會計(jì)數(shù)據(jù)分析 Solutions-Manual Chapter-1-EOC-SM-Updated_第2頁
會計(jì)數(shù)據(jù)分析 Solutions-Manual Chapter-1-EOC-SM-Updated_第3頁
會計(jì)數(shù)據(jù)分析 Solutions-Manual Chapter-1-EOC-SM-Updated_第4頁
會計(jì)數(shù)據(jù)分析 Solutions-Manual Chapter-1-EOC-SM-Updated_第5頁
已閱讀5頁,還剩1頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

SolutionsManual–Chapter1

SolutionstoDiscussionQuestions

Dataanalyticsisdefinedastheprocessofevaluatingdata

withthepurposeofdrawingconclusionstoaddressbusinessquestions.Indeed,effectiveDataAnalyticsprovidesawaytosearchthroughlargestructuredandunstructureddatatoidentifyunknownpatternsorrelationships.

Auniversitymightlearnfromtheanalyzingthedemographicsofitscurrentsetofstudentsinordertoattractitsfuturestudentrecruits.Didtheycomefromcitiesorhighschoolsthatwerecloseby?Weretheirparentsalumnioftheuniversity?DidtheyscorehighoncertainpartsoftheACT?Werethoseofferedascholarshipmorelikelytoattend,etc.?Wassocialmediaeffectiveinattractingstudents?Byanalyzingthistypeofdata,previouslyunknownpatternswillemergethatwillmakerecruitingstudentsmoreeffective.

Therearemanypotentialanswers.Forexample,Monsantomayusemathematicalandstatisticalmodelstoplotoutthebesttimestoplantbothmaleandfemaleplansandwheretoplantthemtomaximizeyield.(

/article/3221621/analytics/6-data-analytics-success-stories-an-inside-look.html#tk.cio_rs

)

Therearemanypotentialanswers.Accountantsmightusedataanalyticstolearnmoreabouttheirallowancefordoubtfulaccountsbylearningwhichcustomerspayordonotpaytheirreceivablebalancesonatimelybasis.Thiswillhelpmakeamoreaccuratebalanceofnetreceivables.

Therearemanypotentialanswers.Forexample,dataanalyticsassociatedwithfinancialreportingmayhelpaccountantsdetermineifanyoftheirinventoryobsolete?Itmayalsohelpthecompanybenchmarkonthefinancialstatementsandfinancialreportingofothersimilarcompaniesandunderstandtheiraccountingpracticestohelpinfertheirown.

Theimpactcyclesuggestsanorderof1)IdentifyingtheQuestions;2)MasteringtheData;3)Performingthetestplan;4)Addressingandrefiningresults;5)Communicatinginsightsand6)Trackingoutcomes.Thecyclestartswithaquestionandthenidentifyingdataandtestplanthatmightaddressthatquestion.Theresultsofthedataanalysisarecommunicatedandtrackedwhichmayleadtoadditional,possiblymorerefinedquestionsthatthenrestartthecycle.

Dataanalysisismosteffectivewhenaquestionisidentifiedthatneedstobeaddressed.Thatwillfocustheanalysisonwhichdataandwhichtestmethodmightbemosteffectiveinaddressingoransweringthequestion.

Masteringthedatarequiresonetoknowwhatdataisavailableandwhetheritmightbeabletohelpaddressthebusinessproblem.Weneedtoknoweverythingaboutthedata,includinghowtoaccessit,itsavailability,howreliableitis(ifthereareerrors),andwhattimeperiodsitcoverstomakesureitcoincideswiththetimingofourbusinessproblem,etc.

Alibabausestheprofilingdataapproachtoidentifypotentialcasesoffraud.Alibabahasworkedtocapturefraudsignalsdirectlyfromitsextensivedatabaseofuserbehaviorsanditsnetwork,thenanalyzestheminreal-timeusingmachinelearningtoaccuratelysortthebadusersfromthegoodones.

Facebookuseslinkpredictiontopredictarelationshipbetweentwopeoplewhenitsuggestspeoplethatonelikelyknowsduetosimilarotherfriends,highschools,collegeorworklocations,etc.

Whilesamplingisuseful,itisstilljustthat,sampling.Bylookingatallofthetransactionsandtestingtheminawaythatwillhighlighttheonesthatarethebiggestdollaritems,oraremostunusual,thatwillallowauditorstofocusonspecificitemsthatmightbeofmaterialsignificance.

Thereareseveralcorrectanswers.Onedataapproachmightberegressionanalysiswhere,givenabalanceoftotalaccountsreceivableheldbyafirm,howlongithasbeenoutstanding,iftheyhavepaiddebtsinthepastallwillhelppredicttheappropriatelevelofallowancefordoubtfulaccountsforbaddebts.

TheDebt-to-IncomeratiomightsuggesttoLendingClubthatthepersonaskingfortheloanwassimplyaskingfortoobigofaloanandtheywouldhavelittleabilitytorepayit.Thelowerthecreditscore,thelesslikelytheloaneewouldbeabletorepaytheloan.

TherearemanyotherpotentialpredictorsofwhethertheLendingClubwouldpayaloan.Hereareafewpossibilities:Whatotherdebtdotheyhave?Howmuchistheirdisposableincome?Dotheyhaveacleancriminalrecord?HavetheyhadaloanwithLendingClubbeforeanddidtheyrepayit?

SolutionstoProblems

Problem1-1

Herearethepredictiveattributesandwhethertheywouldbeapplicabletopredictingwhichloanswouldbedelinquentandwhichloanswillultimatelybefullyrepaid.

Yes/No

PredictiveAttributes

No

desc(Loandescriptionprovidedbyborrower)

Yes

dti(MonthlydebtpaymentstomonthlyincomeRatio)

Yes

grade(LCassignedloangrade)

Yes

home_ownership(valuesincludeRent,Own,Mortgage,Other)

No

next_pymnt_d(Nextscheduledpaymentdate)

No

term(Thenumberofpaymentsontheloan)

Yes

tot_cur_bal(Totalcurrentbalanceofallaccounts)

Problem1-2

PotentialattributesfromtheRejectStatsdatadictionarythatmighthelppredictloanacceptanceorrejectionincludethefollowing:

AmountRequested

Risk_Score

Debt-to-IncomeRatio

ZipCode

State(Possibly)

EmploymentLength

Problem1-3

PercentageoftotalloansrejectedthatliveinArkansas=1.219%

2,915,918populationinArkansasdividedbyUSApopulationof308,745,538=0.9444%

TheloanrejectionpercentageisgreaterthanthepercentoftheUSApopulationthatlivesinArkansas(per2010census),butisreasonablyclose.

Problem1-4

State

LoanRejection%

CA

0.13292708

TX

0.08344411

NY

0.0797736

FL

0.07688089

PA

0.04401981

IL

0.04246422

OH

0.03779744

NJ

0.03708008

GA

0.03683527

VA

0.03131478

MI

0.02718255

NC

0.02672393

MA

0.02547822

MD

0.02340048

AZ

0.02142811

MO

0.01954559

WA

0.0187585

CO

0.01812325

AL

0.0169798

CT

0.01640652

SC

0.01569535

LA

0.01450077

WI

0.01430865

MN

0.01407314

KY

0.01367649

NV

0.01275305

AR

0.01219062

OK

0.01103943

OR

0.00954581

KS

0.00862547

UT

0.00692579

WV

0.00643153

NM

0.00590939

HI

0.005756

NH

0.00551739

RI

0.00498905

DE

0.00354346

MT

0.00284933

VT

0.00250537

AK

0.00249142

DC

0.00236128

SD

0.00223887

WY

0.00220479

IN

0.00149516

MS

0.00059962

TN

0.00055003

NE

0.00022311

IA

0.00017043

ME

0.0001379

ID

8.0568E-05

ND

4.6482E-05

Theloanrejectionpercentageroughlycorrespondswiththepopulationofeachstate.However,thereisstillsubstantialvariationbetweentherejectionpercentageofeachstate.

Problem1-5

Hereisthepivottablebyriskscoregrouping:

RowLabels

CountofLoanTitle

Excellent

2931

Fair

236669

Good

83543

Poor

189621

VeryBad

145322

VeryGood

11907

GrandTotal

669993

TheExcellentcategoryhadthesmallestgroup,whereastheFairgrouphadthebiggestgroup.ArguablythereisagreaterpopulationofFair,eventhoughVeryBadhasasmallercount,itisclearlytheworstofthegroup.

Problem1-6

HereisthepivottablebyDebt-to-Income(DTI)grouping:

RowLabels

CountofAmountRequested

High

340862

Low

159464

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論