版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆四川省武勝烈面中學(xué)高二上數(shù)學(xué)期末統(tǒng)考模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.年底以來,我國多次在重要場合和政策文件中提及碳中和,碳中和指的是二氧化碳排放量和吸收量可以正負(fù)抵消,實現(xiàn)二氧化碳“零排放”.二氧化碳的分子是由一個碳原子和兩個氧原子構(gòu)成的,其結(jié)構(gòu)式為.已知氧有、、三種天然同位素,碳有、、三種天然同位素,則由上述同位素可構(gòu)成的不同二氧化碳分子共有()A.種 B.種C.種 D.種2.已知橢圓:,左、右焦點分別為,過的直線交橢圓于兩點,若的最大值為5,則的值是A.1 B.C. D.3.設(shè)函數(shù),則()A.1 B.5C. D.04.已知,,,若、、三個向量共面,則實數(shù)A3 B.5C.7 D.95.把直線繞原點逆時針轉(zhuǎn)動,使它與圓相切,則直線轉(zhuǎn)動的最小正角度A. B.C. D.6.已知圓,過點P的直線l被圓C所截,且截得最長弦的長度與最短弦的長度比值為5∶4,若O為坐標(biāo)原點,則最大值為()A.3 B.4C.5 D.67.圓與直線的位置關(guān)系為()A.相切 B.相離C.相交 D.無法確定8.已知命題,;命題,,那么下列命題為假命題的是()A. B.C. D.9.“”是“方程表示焦點在x軸上的橢圓”的()A.充要條件 B.必要而不充分條件C.充分而不必要條件 D.既不充分也不必要條件10.已知空間四邊形中,,,,點在上,且,為中點,則等于()A. B.C. D.11.已知為偶函數(shù),且當(dāng)時,,其中為的導(dǎo)數(shù),則不等式的解集為()A. B.C. D.12.是橢圓的焦點,點在橢圓上,點到的距離為1,則到的距離為()A.3 B.4C.5 D.6二、填空題:本題共4小題,每小題5分,共20分。13.已知拋物線的焦點F恰好是橢圓的右焦點,且兩條曲線交點的連線過點F,則該橢圓的離心率為____________14.如圖,設(shè)正方形ABCD與正方形ABEF的邊長都為1,若平面ABCD,則異面直線AC與BF所成角的大小為______15.已知點在直線上,則的最小值為___________.16.已知動圓P過定點,且在定圓的內(nèi)部與其相內(nèi)切,則動圓P的圓心的軌跡方程為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)函數(shù),(1)求的最大值;(2)求證:對于任意x∈(1,7),e1-x+18.(12分)已知,其中.(1)若,求在處的切線方程;(2)若是函數(shù)的極小值點,求函數(shù)在區(qū)間上的最值;(3)討論函數(shù)的單調(diào)性.19.(12分)已知橢圓C:的左右焦為,,點是該橢圓上任意一點,當(dāng)軸時,,(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)記,求實數(shù)m的最大值20.(12分)(1)已知集合,.:,:,并且是的充分條件,求實數(shù)的取值范圍(2)已知:,,:,,若為假命題,求實數(shù)的取值范圍21.(12分)在下面兩個條件中任選一個條件,補充在后面問題中的橫線上,并完成解答.條件①:展開式前三項的二項式系數(shù)的和等于37;條件②:第3項與第7項的二項式系數(shù)相等;問題:在二項式的展開式中,已知__________.(1)求展開式中二項式系數(shù)最大的項;(2)設(shè),求的值;(3)求的展開式中的系數(shù).22.(10分)已知函數(shù).(1)當(dāng)時,求曲線在點處的切線方程;(2)試討論函數(shù)的單調(diào)性.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】分兩種情況討論:兩個氧原子相同、兩個氧原子不同,分別計算出兩種情況下二氧化碳分子的個數(shù),利用分類加法計數(shù)原理可得結(jié)果.【詳解】分以下兩種情況討論:若兩個氧原子相同,此時二氧化碳分子共有種;若兩個氧原子不同,此時二氧化碳分子共有種.由分類加法計數(shù)原理可知,由上述同位素可構(gòu)成的不同二氧化碳分子共有種.故選:C.2、D【解析】由題意可知橢圓是焦點在x軸上的橢圓,利用橢圓定義得到|BF2|+|AF2|=8﹣|AB|,再由過橢圓焦點的弦中通徑的長最短,可知當(dāng)AB垂直于x軸時|AB|最小,把|AB|的最小值b2代入|BF2|+|AF2|=8﹣|AB|,由|BF2|+|AF2|的最大值等于5列式求b的值即可【詳解】由0<b<2可知,焦點在x軸上,∵過F1的直線l交橢圓于A,B兩點,則|BF2|+|AF2|+|BF1|+|AF1|=2a+2a=4a=8∴|BF2|+|AF2|=8﹣|AB|當(dāng)AB垂直x軸時|AB|最小,|BF2|+|AF2|值最大,此時|AB|=b2,則5=8﹣b2,解得b,故選D【點睛】本題考查直線與圓錐曲線的關(guān)系,考查了橢圓的定義,考查橢圓的通徑公式,考查計算能力,屬于中檔題3、B【解析】由題意結(jié)合導(dǎo)數(shù)的運算可得,再由導(dǎo)數(shù)的概念即可得解.【詳解】由題意,所以,所以原式等于.故選:B.4、A【解析】由空間向量共面原理得存在實數(shù),,使得,由此能求出實數(shù)【詳解】解:,,,、、三個向量共面,存在實數(shù),,使得,即有:,解得,,實數(shù)故選:【點睛】本題考查空間向量共面原理的應(yīng)用,屬于基礎(chǔ)題5、B【解析】根據(jù)直線過原點且與圓相切,求出直線的斜率,再數(shù)形結(jié)合計算最小旋轉(zhuǎn)角【詳解】解析:由題意,設(shè)切線為,∴.∴或.∴時轉(zhuǎn)動最小∴最小正角為.故選B.【點睛】本題考查直線與圓的位置關(guān)系,屬于基礎(chǔ)題6、C【解析】由題意,點P在圓C內(nèi),且最長弦的長度為直徑長10,則最短弦的長度為8,進(jìn)而可得,所以點P的軌跡為以C為圓心,半徑為3的圓,從而即可求解.【詳解】解:由題意,圓,所以圓C是以為圓心,半徑為5的圓,因為過點P的直線l被圓C所截,且截得最長弦的長度與最短弦的長度比值為5∶4,所以點P在圓C內(nèi),且最長弦的長度為直徑長10,則最短弦的長度為8,所以由弦長公式有,所以點P的軌跡為以C為圓心,半徑為3的圓,所以,故選:C.7、C【解析】先計算出直線恒過定點,而點在圓內(nèi),所以圓與直線相交.【詳解】直線可化為,所以恒過定點.把代入,有:,所以在圓內(nèi),所以圓與直線的位置關(guān)系為相交.故選:C8、B【解析】由題設(shè)命題的描述判斷、的真假,再判斷其復(fù)合命題的真假即可.【詳解】對于命題,僅當(dāng)時,故為假命題;對于命題,由且開口向上,故為真命題;所以為真命題,為假命題,綜上,為真,為假,為真,為真.故選:B9、A【解析】由橢圓的標(biāo)準(zhǔn)方程結(jié)合充分必要條件的定義即得.【詳解】若,則方程表示焦點在軸上的橢圓;反之,若方程表示焦點在軸上的橢圓,則;所以“”是“方程表示焦點在x軸上的橢圓”的充要條件.故選:A.10、B【解析】利用空間向量運算求得正確答案.【詳解】.故選:B11、A【解析】根據(jù)已知不等式和要求解的不等式特征,構(gòu)造函數(shù),將問題轉(zhuǎn)化為解不等式.通過已知條件研究g(x)的奇偶性和單調(diào)性即可解該不等式.【詳解】令,則根據(jù)題意可知,,∴g(x)是奇函數(shù),∵,∴當(dāng)時,,單調(diào)遞減,∵g(x)是奇函數(shù),g(0)=0,∴g(x)在R上單調(diào)遞減,由不等式得,.故選:A.12、C【解析】利用橢圓的定義直接求解【詳解】由題意得,得,因為,,所以,故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設(shè)兩條曲線交點為根據(jù)橢圓和拋物線對稱性知,不妨點A在第一象限,由A在拋物線上得,A在橢圓上得.則由條件得:.解得(舍去)14、##【解析】建立空間直角坐標(biāo)系,利用空間向量法求出異面直線所成角;【詳解】解:如圖建立空間直角坐標(biāo)系,則、、、,所以,,設(shè)直線與所成角為,則,因為,所以;故答案為:15、2【解析】由已知可用表示,代入所求式子后,結(jié)合二次函數(shù)的性質(zhì)可求【詳解】解:由題意得,即,所以,根據(jù)二次函數(shù)的性質(zhì)可知,當(dāng)時,上式取得最小值4,故的最小值2故答案為:216、【解析】設(shè)切點為,根據(jù)題意,列出點滿足的關(guān)系式即.則點的軌跡是橢圓,然后根據(jù)橢圓的標(biāo)準(zhǔn)方程求點的軌跡方程【詳解】設(shè)動圓和定圓內(nèi)切于點,動點到定點和定圓圓心距離之和恰好等于定圓半徑,即,點的軌跡是以,為兩焦點,長軸長為10的橢圓,,點的軌跡方程為,故答案:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)證明見解析【解析】(1)求出,討論其導(dǎo)數(shù)后可得原函數(shù)的單調(diào)性,從而可得函數(shù)的最大值.(2)先證明任意的,總有,再利用放縮法和換元法將不等式成立問題轉(zhuǎn)化為任意恒成立,后者可利用導(dǎo)數(shù)證明.【小問1詳解】,當(dāng)時,;當(dāng)時,,故在上為增函數(shù),在上為減函數(shù),故.【小問2詳解】因為,故當(dāng)時,,即,而在為減函數(shù),故在上有,故任意的,總有.要證任意恒成立,即證:任意恒成立,即證:任意恒成立,由(1)可得,任意,有即,故即證:任意恒成立,設(shè),即證:任意恒成立,即證:任意恒成立,即證:任意恒成立,即證:任意恒成立,設(shè),則,而在為增函數(shù),,故存在,使得,且時,,時,,故在為減函數(shù),在為增函數(shù),故任意,總有,故任意恒成立,所以任意恒成立.【點睛】思路點睛:不等式的恒成立,可結(jié)合不等式的形式將其轉(zhuǎn)化為若干段上的不等式的恒成立,在每段上可采用不同的方式(導(dǎo)數(shù)、放縮法等)進(jìn)行處理.18、(1);(2)最大值為5,最小值為;(3)答案見解析.【解析】(1)求出導(dǎo)函數(shù),進(jìn)而根據(jù)導(dǎo)數(shù)的幾何意義求出切線的斜率,然后求出切線方程;(2)根據(jù)求出a,進(jìn)而求出函數(shù)的單調(diào)區(qū)間,然后求出函數(shù)的最值;(3)先求出導(dǎo)函數(shù),然后討論a的取值范圍,進(jìn)而求出函數(shù)的單調(diào)區(qū)間.【小問1詳解】當(dāng)時,,,切點坐標(biāo)為,,切線的斜率為,切線方程為,即.【小問2詳解】,是函數(shù)的極小值點,,即,,令,得或,令,得,的單調(diào)遞增區(qū)間為,,的單調(diào)遞減區(qū)間為,,函數(shù)在區(qū)間上的最大值為5,最小值為.【小問3詳解】函數(shù)的定義域為,,令得,.①當(dāng)時,,函數(shù)在R上單調(diào)遞增;②當(dāng)時,,令,得或,令,得,的單調(diào)遞增區(qū)間為,,的單調(diào)遞減區(qū)間為;③當(dāng)時,,令,得或,令,得,的單調(diào)遞增區(qū)間為,,的單調(diào)遞減區(qū)間為.綜上:時,,函數(shù)R上單調(diào)遞增;時,的單調(diào)遞增區(qū)間為,,單調(diào)遞減區(qū)間為;時,的單調(diào)遞增區(qū)間為,,單調(diào)遞減區(qū)間為.19、(1)(2)【解析】(1)利用橢圓的定義及勾股定理可求解;(2)問題轉(zhuǎn)化為在軸截距的問題,臨界條件為直線與橢圓相切,求解即可.【小問1詳解】因為,,所以,∴,所以橢圓標(biāo)準(zhǔn)方程為:【小問2詳解】要求的最值,即求直線在軸截距的最值,可知當(dāng)直線與橢圓相切時,m取得最值.聯(lián)立方程:,整理得,解得所以實數(shù)m的最大值為20、(1);(2)【解析】(1)由二次函數(shù)的性質(zhì),求得,又由,求得集合,根據(jù)命題是命題的充分條件,所以,列出不等式,即可求解(2)依題意知,均為假命題,分別求得實數(shù)的取值范圍,即可求解【詳解】(1)由,∵,∴,,∴,所以集合,由,得,所以集合,因為命題是命題的充分條件,所以,則,解得或,∴實數(shù)的取值范圍是.(2)依題意知,,均為假命題,當(dāng)是假命題時,恒成立,則有,當(dāng)是假命題時,則有,或.所以由均為假命題,得,即.【點睛】本題主要考查了復(fù)合命題的真假求參數(shù),以及充要條件的應(yīng)用,其中解答中正確得出集合間的關(guān)系,列出不等式,以及根據(jù)復(fù)合命題的真假關(guān)系求解是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題21、(1)答案見解析(2)0(3)560【解析】(1)選擇①,由,得,選擇②,由,得;(2)利用賦值法可求解;(3)分兩個部分求解后再求和即可.【小問1詳解】選擇①,因為,解得,所以展
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 高科技產(chǎn)品研發(fā)項目合作框架協(xié)議
- 新興產(chǎn)業(yè)發(fā)展合同
- 高清視頻監(jiān)控系統(tǒng)建設(shè)與維護合同
- 皮革購銷合同
- 數(shù)據(jù)中心服務(wù)協(xié)議書
- 教育培訓(xùn)行業(yè)退款保障協(xié)議
- 旅游行業(yè)合同糾紛處理控制流程實踐
- 2025年度自愿解除勞動協(xié)議及離職后勞動關(guān)系處理合同
- 二零二五年度新能源汽車專利使用許可合同
- 二零二五年度科技研發(fā)資金托管合同
- 2025年八省聯(lián)考數(shù)學(xué)試題(原卷版)
- 2024年日語培訓(xùn)機構(gòu)市場供需現(xiàn)狀及投資戰(zhàn)略研究報告
- 《榜樣9》觀后感心得體會二
- 歷史-廣東省大灣區(qū)2025屆高三第一次模擬試卷和答案
- 天津市部分區(qū)2024-2025學(xué)年九年級(上)期末物理試卷(含答案)
- 保潔服務(wù)質(zhì)量與服務(wù)意識的培訓(xùn)
- 弘揚中華傳統(tǒng)文化課件
- 基于協(xié)同過濾算法的電影推薦系統(tǒng)設(shè)計
- 消防應(yīng)急預(yù)案流程圖
- 《數(shù)據(jù)科學(xué)與大數(shù)據(jù)技術(shù)導(dǎo)論》完整版課件(全)
- 人教統(tǒng)編版高中語文必修下冊第六單元(單元總結(jié))
評論
0/150
提交評論