版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
上海市靜安區(qū)2025屆高一數(shù)學第一學期期末調(diào)研模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.為了得到的圖象,可以將的圖象()A.向左平移個單位 B.向左平移個單位C.向右平移個單位 D.向右平移個單位2.函數(shù)的圖象的一個對稱中心為()A. B.C. D.3.下列函數(shù)中,在上是增函數(shù)的是A. B.C. D.4.已知函數(shù),下列含有函數(shù)零點的區(qū)間是()A. B.C. D.5.若函數(shù)分別是上的奇函數(shù)、偶函數(shù),且滿足,則有()A. B.C. D.6.從裝有兩個紅球和兩個白球的口袋內(nèi)任取兩個球,那么互斥而不對立的事件是()A.至少有一個白球與都是紅球 B.恰好有一個白球與都是紅球C.至少有一個白球與都是白球 D.至少有一個白球與至少一個紅球7.已知點,,,且滿足,若點在軸上,則等于A. B.C. D.8.甲、乙兩人破譯一份電報,甲能獨立破譯的概率為0.3,乙能獨立破譯的概率為0.4,且兩人是否破譯成功互不影響,則兩人都成功破譯的概率為()A.0.5 B.0.7C.0.12 D.0.889.已知指數(shù)函數(shù)是減函數(shù),若,,,則m,n,p的大小關(guān)系是()A. B.C. D.10.點P在正方形ABCD所在平面外,PD⊥平面ABCD,PD=AD,則PA與BD所成角的度數(shù)為()A.30° B.45°C.60° D.90°二、填空題:本大題共6小題,每小題5分,共30分。11.已知冪函數(shù)(是常數(shù))的圖象經(jīng)過點,那么________12.已知,,當時,關(guān)于的不等式恒成立,則的最小值是_________13.若存在常數(shù)k和b,使得函數(shù)和對其公共定義域上的任意實數(shù)x都滿足:和恒成立(或和恒成立),則稱此直線為和的“隔離直線”.已知函數(shù),,若函數(shù)和之間存在隔離直線,則實數(shù)b的取值范圍是______14.已知函數(shù),則函數(shù)零點的個數(shù)為_________15.已知函數(shù)對于任意實數(shù)x滿足.若,則_______________16.奇函數(shù)f(x)是定義在[-2,2]上的減函數(shù),若f(2a+1)+f(4a-3)>0,則實數(shù)a的取值范圍是_______三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知二次函數(shù).(1)若在的最大值為5,求的值;(2)當時,若對任意實數(shù),總存在,使得.求的取值范圍.18.已知圓,直線過點.(1)若直線與圓相切,求直線的方程;(2)若直線與圓交于兩點,當?shù)拿娣e最大時,求直線的方程.19.(1)計算:;(2)計算:20.若向量的最大值為(1)求的值及圖像的對稱中心;(2)若不等式在上恒成立,求的取值范圍21.已知函數(shù).(1)當時,解不等式;(2)設(shè),若,,都有,求實數(shù)a的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】根據(jù)左加右減原則,只需將函數(shù)向左平移個單位可得到.【詳解】,即向左平移個單位可得到.故選:A【點睛】本題考查正弦型函數(shù)的圖像與性質(zhì),三角函數(shù)誘導公式,屬于基礎(chǔ)題.2、C【解析】根據(jù)正切函數(shù)的對稱中心為,可求得函數(shù)y圖象的一個對稱中心【詳解】由題意,令,,解得,,當時,,所以函數(shù)的圖象的一個對稱中心為故選C【點睛】本題主要考查了正切函數(shù)的圖象與性質(zhì)的應用問題,其中解答中熟記正切函數(shù)的圖象與性質(zhì),準確計算是解答的關(guān)鍵,著重考查了運算與求解能力,屬于基礎(chǔ)題.3、B【解析】對于,,當時為減函數(shù),故錯誤;對于,,當時為減函數(shù),故錯誤;對于,在和上都是減函數(shù),故錯誤;故選4、C【解析】利用零點存性定理即可求解.【詳解】解析:因為函數(shù)單調(diào)遞增,且,,,,.且所以含有函數(shù)零點的區(qū)間為.故選:C5、D【解析】函數(shù)分別是上的奇函數(shù)、偶函數(shù),,由,得,,,解方程組得,代入計算比較大小可得.考點:函數(shù)奇偶性及函數(shù)求解析式6、B【解析】列舉每個事件所包含的基本事件,結(jié)合互斥事件和對立事件的定義,依次驗證即可.【詳解】解:對于A,事件:“至少有一個白球”與事件:“都是紅球”不能同時發(fā)生,但是對立,故A錯誤;對于B,事件:“恰好有一個白球”與事件:“都是紅球”不能同時發(fā)生,但從口袋內(nèi)任取兩個球時還有可能是兩個都是白球,所以兩個事件互斥而不對立,故B正確;對于C,事件:“至少有一個白球”與事件:“都是白球”可以同時發(fā)生,所以這兩個事件不是互斥的,故C錯誤;對于D,事件:“至少有一個白球”與事件:“至少一個紅球”可以同時發(fā)生,即“一個白球,一個紅球”,所以這兩個事件不是互斥的,故D錯誤.故選:B.7、C【解析】由題意得,∴設(shè)點的坐標為,∵,∴,∴,解得故選:C8、C【解析】根據(jù)相互獨立事件的概率乘法公式,即可求解.【詳解】由題意,甲、乙分別能獨立破譯的概率為和,且兩人是否破譯成功互不影響,則這份電報兩人都成功破譯的概率為.C.9、B【解析】由已知可知,再利用指對冪函數(shù)的性質(zhì),比較m,n,p與0,1的大小,即可得解.【詳解】由指數(shù)函數(shù)是減函數(shù),可知,結(jié)合冪函數(shù)的性質(zhì)可知,即結(jié)合指數(shù)函數(shù)的性質(zhì)可知,即結(jié)合對數(shù)函數(shù)的性質(zhì)可知,即,故選:B.【點睛】方法點睛:本題考查比較大小,比較指數(shù)式和對數(shù)式的大小,可以利用函數(shù)的單調(diào)性,引入中間量;有時也可用數(shù)形結(jié)合的方法,解題時要根據(jù)實際情況來構(gòu)造相應的函數(shù),利用函數(shù)單調(diào)性進行比較,如果指數(shù)相同,而底數(shù)不同則構(gòu)造冪函數(shù),若底數(shù)相同而指數(shù)不同則構(gòu)造指數(shù)函數(shù),若引入中間量,一般選0或1.10、C【解析】分別取AC.PC中點O.E.連OE,DE;則OE//PA,所以(或其補角)就是PA與BD所成的角;因PD⊥平面ABCD,所以PD⊥DC,PD⊥AD.設(shè)正方形ABCD邊長為2,則PA=PC=BD=所以O(shè)D=OE=DE=,是正三角形,,故選C二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】首先代入函數(shù)解析式求出,即可得到函數(shù)解析式,再代入求出函數(shù)值即可;【詳解】解:因為冪函數(shù)(是常數(shù))的圖象經(jīng)過點,所以,所以,所以,所以;故答案:12、4【解析】由題意可知,當時,有,所以,所以點睛:本題考查基本不等式的應用.本題中,關(guān)于的不等式恒成立,則當時,有,得到,所以.本題的關(guān)鍵是理解條件中的恒成立13、【解析】由已知可得、恒成立,利用一元二次不等式的解法和基本不等式即可求得實數(shù)的取值范圍.【詳解】因為函數(shù)和之間存在隔離直線,所以當時,可得對任意的恒成立,則,即,所以;當時,對恒成立,即恒成立,又當時,,當且僅當即時等號成立,所以,綜上所述,實數(shù)的取值范圍是.故答案為:.14、【解析】解方程,即可得解.【詳解】當時,由,可得(舍)或;當時,由,可得.綜上所述,函數(shù)零點的個數(shù)為.故答案為:.15、3【解析】根據(jù)得到周期為2,可得結(jié)合可求得答案.【詳解】解:∵,所以周期為2的函數(shù),又∵,∴故答案為:316、[【解析】利用函數(shù)的奇偶性、單調(diào)性去掉不等式中的符號“f”,可轉(zhuǎn)化為具體不等式,注意函數(shù)定義域【詳解】解:由f(2a+1)+f(4a-3)>0得f(2a+1)>-f(4a-3),又f(x)為奇函數(shù),得-f(4a-3)=f(3-4a),∴f(2a+1)>f(3-4a),又f(x)是定義在[-2,2]上的減函數(shù),∴解得:1即a∈故答案為:1【點睛】本題考查函數(shù)的奇偶性、單調(diào)性的綜合應用,考查轉(zhuǎn)化思想,解決本題的關(guān)鍵是利用性質(zhì)去掉符號“f”三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)2;(2).【解析】(1)時,;當時,根據(jù)單調(diào)性可得答案;(2)依題意得,當、時,利用的單調(diào)性可得答案;當和時,結(jié)合圖象和單調(diào)性可得答案.【詳解】(1)當時,,因為,故,;當時,對稱軸,在上單調(diào)遞減,所以,不合題意,舍去,綜上可得:.(2)依題意得:,即,.①當時,對恒成立,所以,即;②當時,對恒成立,所以,即;③當時,對恒成立,所以,即;④當時,對恒成立,所以,即;綜上所述,的取值范圍為.【點睛】本題考查了二次函數(shù)恒成立的問題,所謂“動軸定區(qū)間法”,軸動區(qū)間定:比較對稱軸與區(qū)間端點的位置關(guān)系,根據(jù)函數(shù)的單調(diào)性數(shù)形結(jié)合判斷取得最值的點,需要分類討論.18、(1)或;(2)或.【解析】(1)分直線l的斜率不存在與直線l的斜率存在兩種討論,根據(jù)直線l與圓M相切進行計算,可得直線的方程;(2)設(shè)直線l的方程為,圓心到直線l的距離為d,可得的長,由的面積最大,可得,可得k的值,可得直線的方程.【詳解】解:(1)當直線l的斜率不存在時,直線l的方程為,此時直線l與圓M相切,所以符合題意,當直線l的斜率存在時,設(shè)l的斜率為k,則直線l的方程為,即,因為直線l與圓M相切,所以圓心到直線的距離等于圓的半徑,即,解得,即直線l的方程為;綜上,直線l的方程為或,(2)因為直線l與圓M交于P.Q兩點,所以直線l斜率存在,可設(shè)直線l的方程為,圓心到直線l的距離為d,則從而的面積為·當時,的面積最大,因為,所以,解得或,故直線l的方程為或.【點睛】本題主要考查直線與圓的位置關(guān)系及方程的應用,涉及直線與圓相切,直線與圓相交及三角形面積的計算與點到直線的距離公式,需靈活運用各知識求解.19、(1);(2).【解析】(1)由根式化為分數(shù)指數(shù)冪,再由冪的運算法則計算(2)利用對數(shù)的換底公式和運算法則計算【詳解】(1)原式=8+0.1+1=9.1(2)原式==1+=1+2=320、(1)(2)【解析】(1)先利用向量的數(shù)量積公式和倍角公式對函數(shù)式進行化簡,再利用兩倍角公式以及兩角差的正弦公式進行整理,然后根據(jù)最大值為解出的值,最后根據(jù)正弦函數(shù)的性質(zhì)求得函數(shù)的對稱中心;(2)首先通過的取值范圍來確定函數(shù)的范圍,再根據(jù)不等式在上恒成立,推斷出,最后計算得出結(jié)果【詳解】因為的最大值為,所以,由得所以的對稱中心為;(2)因為,所以即,因為不等式在上恒成立,所以即解得,的取值范圍為【點睛】本題考查了向量的相關(guān)性質(zhì)以及三角函數(shù)相關(guān)性質(zhì),主要考查了向量的乘法、三角函數(shù)的對稱性、三角恒等變換、三角函數(shù)的值域等,屬于中檔題.的對稱中心為21、(1),(2)【解析】(1)由同角關(guān)系原不等式可化為,化簡可得,結(jié)合正弦函數(shù)可求其解集,(2)由條件可得在上的最大值
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度撫養(yǎng)權(quán)變更與子女教育費用分擔合同3篇
- 2024藝術(shù)品拍賣會成交與代理合同
- 2025年度智慧城市建設(shè)項目場地租賃合同范本11篇
- 2025年度智能物流機器人產(chǎn)品獨家銷售與合作開發(fā)合同4篇
- 2024直播合作合同范本
- 二零二四停車場新能源汽車充電站建設(shè)合同3篇
- 二零二五年度健康養(yǎng)生消費者會員合同協(xié)議
- 2025年度茶樓轉(zhuǎn)讓協(xié)議書:江南風情特色茶樓經(jīng)營權(quán)全面移交合同
- 2025年度藝術(shù)畫廊合伙人經(jīng)營合同
- 2025年度演員安全培訓與責任承擔合同
- 集裝箱貨運碼頭的火災防范措施
- 《高速鐵路客運安全與應急處理》課程標準
- 23J916-1:住宅排氣道(一)
- 七年級數(shù)學上冊專題1.14數(shù)軸與絕對值綜合問題大題專練(重難點培優(yōu))-【講練課堂】2022-2023學年七年級數(shù)學上冊尖子生同步培優(yōu)題典(原卷版)【人教版】
- 移動商務(wù)內(nèi)容運營(吳洪貴)任務(wù)二 內(nèi)容運營方案優(yōu)化
- 社會保險職工增減表
- 小學語文低年級寫話 鴿子
- 仁愛英語八年級上冊詞匯練習題全冊
- 通用BIQS培訓資料課件
- 報價單模板及范文(通用十二篇)
- 鈑金部品質(zhì)控制計劃
評論
0/150
提交評論