版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
江西省宜春市靖安縣靖安中學2025屆高二上數(shù)學期末監(jiān)測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.記等差數(shù)列的前n項和為,若,,則等于()A.5 B.31C.38 D.412.積分()A. B.C. D.3.已知,則“”是“直線與平行”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件4.公元前6世紀,古希臘的畢達哥拉斯學派研究發(fā)現(xiàn)了黃金分割,簡稱黃金數(shù).離心率等于黃金數(shù)的倒數(shù)的雙曲線稱為黃金雙曲線.若雙曲線是黃金雙曲線,則()A. B.C. D.5.已知過點的直線與圓相切,且與直線平行,則()A.2 B.1C. D.6.在等比數(shù)列中,,公比,則()A. B.6C. D.27.數(shù)列的一個通項公式為()A. B.C. D.8.若展開式的二項式系數(shù)之和為,則展開式的常數(shù)項為()A. B.C. D.9.已知直線方程為,則其傾斜角為()A.30° B.60°C.120° D.150°10.不等式表示的平面區(qū)域是一個()A.三角形 B.直角三角形C.矩形 D.梯形11.已知拋物線的焦點為,為拋物線上一點,為坐標原點,且,則()A.4 B.2C. D.12.設(shè)函數(shù)在定義域內(nèi)可導,的圖像如圖所示,則導函數(shù)的圖象可能為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè),復數(shù),,若是純虛數(shù),則的虛部為_________.14.已知曲線的方程是,給出下列四個結(jié)論:①曲線C恰好經(jīng)過4個整點(即橫、縱坐標均為整數(shù)的點);②曲線有4條對稱軸;③曲線上任意一點到原點的距離都不小于1;④曲線所圍成圖形的面積大于4;其中,所有正確結(jié)論的序號是_____15.無窮數(shù)列滿足:只要必有則稱為“和諧遞進數(shù)列”.已知為“和諧遞進數(shù)列”,且前四項成等比數(shù)列,,則=_________.16.雙曲線的離心率為2,寫出滿足條件的一個雙曲線的標準方程__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)某校從高一年級學生中隨機抽取40名中學生,將他們的期中考試數(shù)學成績(滿分100分,成績均為不低于40分的整數(shù))分成六段:,,…,所得到如圖所示的頻率分布直圖(1)求圖中實數(shù)的值;(2)若該校高一年級共有640人,試估計該校高一年級期中考試數(shù)學成績不低于60分的人數(shù);(3)若從數(shù)學成績在[40,50)與[90,100]兩個分數(shù)段內(nèi)的學生中隨機選取兩名學生,求這2名學生的數(shù)學成績之差的絕對值不大于10的概率.18.(12分)如圖,已知頂點,,動點分別在軸,軸上移動,延長至點,使得,且.(1)求動點的軌跡;(2)過點分別作直線交曲線于兩點,若直線的傾斜角互補,證明:直線的斜率為定值;(3)過點分別作直線交曲線于兩點,若,直線是否經(jīng)過定點?若是,求出該定點,若不是,說明理由.19.(12分)已知拋物線:的焦點是圓與軸的一個交點.(1)求拋物線的方程;(2)若過點的直線與拋物線交于不同的兩點A、B,О為坐標原點,證明:.20.(12分)在四棱錐P﹣ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E為PD的中點,PA=2AB=2(1)求四棱錐P﹣ABCD的體積V;(2)若F為PC的中點,求證PC⊥平面AEF21.(12分)已知橢圓的左、右焦點分別為,,離心率為,過左焦點的直線l與橢圓C交于A,B兩點,的周長為8(1)求橢圓C的標準方程;(2)如圖,,是橢圓C的短軸端點,P是橢圓C上異于點,的動點,點Q滿足,,求證與的面積之比為定值22.(10分)已知等差數(shù)列的前項和為,,且.(1)求數(shù)列的通項公式;(2)證明:數(shù)列的前項和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】設(shè)等差數(shù)列的公差為d,首先根據(jù)題意得到,再解方程組即可得到答案.【詳解】解:設(shè)等差數(shù)列的公差為d,由題知:,解得.故選:A.2、B【解析】根據(jù)定積分的幾何意義求值即可.【詳解】由題設(shè),定積分表示圓在x軸的上半部分,所以.故選:B3、A【解析】首先由兩直線平行的充要條件求出參數(shù)的取值,再根據(jù)充分條件、必要條件的定義判斷即可;【詳解】因為直線與平行,所以,解得或,所以“”是“直線與平行”的充分不必要條件.故選:A.4、A【解析】根據(jù)黃金雙曲線的定義直接列方程求解【詳解】雙曲線中的,所以離心率,因為雙曲線是黃金雙曲線,所以,兩邊平方得,解得或(舍去),故選:A5、C【解析】先根據(jù)垂直關(guān)系設(shè)切線方程,再根據(jù)圓心到切線距離等于半徑列式解得結(jié)果.【詳解】因為切線與直線平行,所以切線方程可設(shè)為因為切線過點P(2,2),所以因為與圓相切,所以故選:C6、D【解析】利用等比數(shù)列的通項公式求解【詳解】由等比數(shù)列的通項公式得:.故選:D7、A【解析】根據(jù)規(guī)律,總結(jié)通項公式,即可得答案.【詳解】根據(jù)規(guī)律可知數(shù)列的前三項為,所以該數(shù)列一個通項公式為故選:A8、C【解析】利用二項式系數(shù)的性質(zhì)求得的值,再利用二項式展開式的通項公式,求得結(jié)果即可.【詳解】解:因為展開式的二項式系數(shù)之和為,則,所以,令,求得,所以展開式的常數(shù)項為.故選:C.9、D【解析】由直線方程可得斜率,根據(jù)斜率與傾斜角的關(guān)系即可求傾斜角大小.【詳解】由題設(shè),直線斜率,若直線的傾斜角為,則,∵,∴.故選:D10、D【解析】作出不等式組所表示平面區(qū)域,可得出結(jié)論.【詳解】由可得或,作出不等式組所表示的平面區(qū)域如下圖中的陰影部分區(qū)域所示:由圖可知,不等式表示的平面區(qū)域是一個梯形.故選:D.11、B【解析】依題意可得,設(shè),根據(jù)可得,,根據(jù)為拋物線上一點,可得.【詳解】依題意可得,設(shè),由得,所以,,所以,,因為為拋物線上一點,所以,解得.故選:B.【點睛】本題考查了平面向量加法的坐標運算,考查了求拋物線方程,屬于基礎(chǔ)題.12、D【解析】根據(jù)函數(shù)的單調(diào)性得到導數(shù)的正負,從而得到函數(shù)的圖象.【詳解】由函數(shù)的圖象可知,當時,單調(diào)遞增,則,所以A選項和C選項錯誤;當時,先增,再減,然后再增,則先正,再負,然后再正,所以B選項錯誤.故選:D.【點睛】本題主要考查函數(shù)的單調(diào)性和導數(shù)的關(guān)系,意在考查學生對該知識的掌握水平,屬于基礎(chǔ)題.一般地,函數(shù)在某個區(qū)間可導,,則在這個區(qū)間是增函數(shù);函數(shù)在某個區(qū)間可導,,則在這個區(qū)間是減函數(shù).二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由復數(shù)除法的運算法則求出,又是純虛數(shù),可求出,從而根據(jù)共軛復數(shù)及虛部的定義即可求解.【詳解】解:因為復數(shù),,所以,又是純虛數(shù),所以,所以,所以所以的虛部為,故答案:.14、②③④【解析】根據(jù)曲線方程作出曲線,即可根據(jù)題意判斷各結(jié)論的真假【詳解】曲線的簡圖如下:根據(jù)圖象以及方程可知,曲線C恰好經(jīng)過9個整點,它們是,,,所以①不正確;由圖可知,曲線有4條對稱軸,它們分別是軸,軸,直線和,②正確;由圖可知,曲線上任意一點到原點的距離都不小于1,③正確;由圖可知,曲線所圍成圖形的面積等于,④正確故答案為:②③④15、7578【解析】根據(jù)新定義得數(shù)列是周期數(shù)列,從而易求得【詳解】∵成等比數(shù)列,,∴,又,為“和諧遞進數(shù)列”,∴,,,,…,∴數(shù)列是周期數(shù)列,周期為4∴故答案為:757816、(答案不唯一例如:等,只需滿足即可)【解析】根據(jù)離心率和的關(guān)系,可得到,只要滿足以上關(guān)系的即可【詳解】由題可知,又,所以,只要滿足以上關(guān)系即可.,答案不唯一例如:等故答案為:(答案不唯一例如:等,只需滿足即可)三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)a=0.03;(2)544人;(3).【解析】(1)根據(jù)圖中所有小矩形的面積之和等于1求解.
(2)根據(jù)頻率分布直方圖,得到成績不低于60分的頻率,再根據(jù)該校高一年級共有學生640人求解.
(3)由頻率分布直方圖得到成績在[40,50)和[90,100]分數(shù)段內(nèi)的人數(shù),先列舉出從數(shù)學成績在[40,50)與[90,100]兩個分數(shù)段內(nèi)的學生中隨機選取兩名學生的基本事件總數(shù),再得到兩名學生的數(shù)學成績之差的絕對值不大于10”的基本事件數(shù),代入古典概型概率求解.【詳解】(1)∵圖中所有小矩形的面積之和等于1,∴10×(0.005+0.01+0.02+a+0.025+0.01)=1,解得a=0.03.
(2)根據(jù)頻率分布直方圖,成績不低于60分的頻率為1?10×(0.005+0.01)=0.85,
∵該校高一年級共有學生640人,
∴由樣本估計總體的思想,可估計該校高一年級數(shù)學成績不低于60分的人數(shù)約為640×0.85=544人.
(3)成績在[40,50)分數(shù)段內(nèi)的人數(shù)為40×0.05=2人,分別記為A,B,
成績在[90,100]分數(shù)段內(nèi)的人數(shù)為40×0.1=4人,分別記為C,D,E,F(xiàn).
若從數(shù)學成績在[40,50)與[90,100]兩個分數(shù)段內(nèi)的學生中隨機選取兩名學生,
則所有的基本事件有:(A,B),(A,C),(A,D),(A,E),(A,F(xiàn)),(B,C),(B,D),(B,E),(B,F(xiàn)),(C,D),(C,E),
(C,F(xiàn)),(D,E),(D,F(xiàn)),(E,F(xiàn))共15種.
如果兩名學生的數(shù)學成績都在[40,50)分數(shù)段內(nèi)或都在[90,100]分數(shù)段內(nèi),
那么這兩名學生的數(shù)學成績之差的絕對值一定不大于10.
如果一個成績在[40,50)分數(shù)段內(nèi),另一個成績在[90,100]分數(shù)段內(nèi),
那么這兩名學生數(shù)學成績之差的絕對值一定大于10.
記“這兩名學生的數(shù)學成績之差的絕對值不大于10”為事件M,
則事件M包含的基本事件有:(A,B),(C,D),(C,E),(C,F(xiàn)),(D,E),(D,F(xiàn)),(E,F(xiàn))共7種.
∴所求概率為P(M)=.【點睛】本題主要考查頻率分布直方圖的應(yīng)用以及古典概型概率的求法,還考查了運算求解的能力,屬于中檔題.18、(1);(2)證明見解析;(3).【解析】(1)設(shè)點M,P,Q的坐標,將向量進行坐標化,整理即可得軌跡方程;(2)設(shè)點,,直線的傾斜角互補,則兩直線斜率互為相反數(shù),用斜率公式計算得到,即可計算kAB;(3)若,由兩直線斜率積為-1,可得到關(guān)于與的等量關(guān)系,寫出直線AB的方程,將等量關(guān)系代入直線方程整理可得直線AB經(jīng)過的定點【詳解】(1)設(shè),,.由,得,即.因為,所以,所以.所以動點的軌跡為拋物線,其方程為.(2)證明:設(shè)點,,若直線的傾斜角互補,則兩直線斜率互為相反數(shù),又,,所以,,整理得,所以.(3)因為,所以,即,①直線的方程為:,整理得:,②將①代入②得,即,當時,即直線經(jīng)過定點.【點睛】本題考查直接法求軌跡方程,考查直線斜率為定值的求法和直線恒過定點問題.19、(1)(2)證明見解析【解析】(1)由圓與軸的交點分別為,可得拋物線的焦點為,從而即可求解;(2)設(shè)直線為,聯(lián)立拋物線方程,由韋達定理及,求出即可得證.【小問1詳解】解:由題意知,圓與軸的交點分別為,則拋物線的焦點為,所以,所以拋物線方程為;【小問2詳解】證明:設(shè)直線為,聯(lián)立方程,有,所以,所以,所以.20、(1)(2)見解析.【解析】(1)在中,,求得,由此能求出四棱錐的體積;(2)由平面,證得和,由此利用線面垂直的判定定理,即可證得平面.試題解析:(1)在中,.在中,.則.(2),為的中點,.平面.平面.為中點,為為中點,,則.平面.考點:四棱錐的體積公式;直線與平面垂直的判定與證明.21、(1)(2)證明見解析【解析】(1)根據(jù)周長為8,求得a,再根據(jù)離心率求解;(2)方法一:設(shè),,得到直線和直線的方程,聯(lián)立求得Q的橫坐標,根據(jù)在橢圓上,得到,然后代入Q的橫坐標求解;方法二:設(shè)直線,的斜率分別為k,,點,,直線的方程為,與橢圓方程聯(lián)立,求得點P橫坐標,再由的直線方程聯(lián)立,得到P,Q的橫坐標的關(guān)系求解.【小問1詳解】解:∵的周長為8,∴,即,∵離心率,∴,,∴橢圓C的標準方程為【小問2詳解】方法一:設(shè),則直線斜率,∵,∴直線斜率,∴直線的方程為:,同理直線的方程為:,聯(lián)立上面兩直線方
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 八下期中(高頻論述題50題)(測試范圍:第1-11課)(解析版)
- 員工試用期轉(zhuǎn)正的申請書范文500字
- 網(wǎng)格布局創(chuàng)新-洞察分析
- 營養(yǎng)干預與慢性病防控-洞察分析
- 營銷自動化應(yīng)用-洞察分析
- 醫(yī)療器械品牌國際化路徑-洞察分析
- 胸腺五肽與免疫調(diào)節(jié)蛋白研究-洞察分析
- 蕁麻疹與炎癥性疾病關(guān)聯(lián)-洞察分析
- 外觀模式數(shù)據(jù)處理-洞察分析
- 顏料發(fā)光材料研究-洞察分析
- 2023年江蘇省五年制專轉(zhuǎn)本英語統(tǒng)考真題(試卷+答案)
- 貴州省貴陽市英語小學六年級上學期試卷及答案指導(2024年)
- 2024年輕質(zhì)隔墻板采購安裝合同
- Unit 8 The Spring Festival Part A (教學設(shè)計)-2024-2025學年閩教版英語四年級上冊
- 部編新人教版小學語文6六年級上冊(全冊)教案設(shè)計
- 山東省濟南市2023-2024學年高二年級上冊1月期末英語試題(解析版)
- 初中體育教案【完整版】七年級
- 2024-2030年中國城市供熱行業(yè)市場前景預測及發(fā)展趨勢預判報告
- 人教版七年級上冊《生物》期末試卷(完整)
- 福建中考英語作文15分評分標準
- 智慧磐石工程建設(shè)方案
評論
0/150
提交評論