版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
吉林省蛟河市朝鮮族中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測(cè)試題注意事項(xiàng)1.考生要認(rèn)真填寫(xiě)考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書(shū)寫(xiě)在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若離散型隨機(jī)變量的所有可能取值為1,2,3,…,n,且取每一個(gè)值的概率相同,若,則n的值為()A.4 B.6C.9 D.102.已知,,若,則實(shí)數(shù)的值為()A. B.C. D.3.已知F是拋物線的焦點(diǎn),直線l是拋物線的準(zhǔn)線,則F到直線l的距離為()A.2 B.4C.6 D.84.設(shè)橢圓:的右頂點(diǎn)為,右焦點(diǎn)為,為橢圓在第二象限內(nèi)的點(diǎn),直線交橢圓于點(diǎn),為原點(diǎn),若直線平分線段,則橢圓的離心率為A. B.C. D.5.已知點(diǎn)P是圓上一點(diǎn),則點(diǎn)P到直線的距離的最大值為()A.2 B.C. D.6.實(shí)數(shù)且,,則連接,兩點(diǎn)的直線與圓C:的位置關(guān)系是()A.相離 B.相切C.相交 D.不能確定7.如圖,棱長(zhǎng)為1的正方體中,為線段上的動(dòng)點(diǎn),則下列結(jié)論錯(cuò)誤的是A.B.平面平面C.的最大值為D.的最小值為8.已知拋物線的焦點(diǎn)為F,過(guò)F作斜率為2的直線l與拋物線交于A,B兩點(diǎn),若弦的中點(diǎn)到拋物線準(zhǔn)線的距離為3,則拋物線的方程為()A. B.C. D.9.橢圓=1的一個(gè)焦點(diǎn)為F,過(guò)原點(diǎn)O作直線(不經(jīng)過(guò)焦點(diǎn)F)與橢圓交于A,B兩點(diǎn),若△ABF的面積是20,則直線AB的斜率為()A. B.C. D.10.已知橢圓+=1(a>b>0)的右焦點(diǎn)為F(3,0),過(guò)點(diǎn)F的直線交橢圓于A、B兩點(diǎn).若AB的中點(diǎn)坐標(biāo)為(1,-1),則E的方程為A.+=1 B.+=1C.+=1 D.+=111.正三棱柱各棱長(zhǎng)均為為棱的中點(diǎn),則點(diǎn)到平面的距離為()A. B.C. D.112.設(shè)拋物線上一點(diǎn)到軸的距離是4,則點(diǎn)到該拋物線焦點(diǎn)的距離是()A.6 B.8C.9 D.10二、填空題:本題共4小題,每小題5分,共20分。13.用1,2,3,4,5組成沒(méi)有重復(fù)數(shù)字的五位數(shù),其中個(gè)位小于百位且百位小于萬(wàn)位的五位數(shù)有n個(gè),則的展開(kāi)式中,的系數(shù)是___________.(用數(shù)字作答)14.若滿足約束條件,則的最大值為_(kāi)________.15.過(guò)拋物線:的焦點(diǎn)的直線交于,兩點(diǎn),若,則線段中點(diǎn)的橫坐標(biāo)為_(kāi)_____16.北京天壇的圓丘壇為古代祭天的場(chǎng)所,分上、中、下三層,上層的中心是一塊天心石,圍繞它的第一圈有9塊石板,從第二圈開(kāi)始,每一圈比前一圈多9塊.已知每層圈數(shù)相同,共有9圈,則下層比上層多______塊石板三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知曲線在處的切線方程為,且.(1)求的解析式;(2)若時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.18.(12分)已知等差數(shù)列的前項(xiàng)和為,數(shù)列是等比數(shù)列,,,,.(1)求數(shù)列和的通項(xiàng)公式;(2)若,設(shè)數(shù)列的前項(xiàng)和為,求.19.(12分)已知函數(shù),且(1)求曲線在點(diǎn)處的切線方程;(2)求函數(shù)在區(qū)間上的最小值20.(12分)在①,②,③,,成等比數(shù)列這三個(gè)條件中選擇符合題意的兩個(gè)條件,補(bǔ)充在下面的問(wèn)題中,并求解.已知數(shù)列中,公差不等于的等差數(shù)列滿足_________,求數(shù)列的前項(xiàng)和.21.(12分)若存在常數(shù),使得對(duì)任意,,均有,則稱為有界集合,同時(shí)稱為集合的上界.(1)設(shè),,試判斷A、B是否為有界集合,并說(shuō)明理由;(2)已知常數(shù),若函數(shù)為有界集合,求集合的上界最小值.22.(10分)已知函數(shù)(1)若,求函數(shù)的單調(diào)區(qū)間;(2)若函數(shù)有兩個(gè)不相等的零點(diǎn),證明:
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】根據(jù)分布列即可求出【詳解】因?yàn)椋怨蔬x:D2、A【解析】由,得,從而可得答案.【詳解】解:因?yàn)?,所以,即,解?故選:A.3、B【解析】根據(jù)拋物線定義即可求解【詳解】由得,所以F到直線l的距離為故選:B4、B【解析】如上圖,設(shè)AC中點(diǎn)為M,連OM,則OM為的中位線,易得∽,且,即可得,選B.點(diǎn)睛:本題主要考查橢圓的方程和性質(zhì),主要是離心率的求法,本題的關(guān)鍵是利用中位線定理和相似三角形定理5、C【解析】求出圓心到直線的距離,由這個(gè)距離加上半徑即得【詳解】由圓,可得圓心坐標(biāo),半徑,則圓心C到直線的距離為,所以點(diǎn)P到直線l的距離的最大值為.故選:C6、B【解析】由題意知,m,n是方程的根,再根據(jù)兩點(diǎn)式求出直線方程,利用圓心到直線的距離與半徑之間的關(guān)系即可求解.【詳解】由題意知,m,n是方程的根,,,過(guò),兩點(diǎn)的直線方程為:,圓心到直線的距離為:,故直線和圓相切,故選:B【點(diǎn)睛】本題考查了直線與圓的位置關(guān)系,考查了計(jì)算求解能力,屬于基礎(chǔ)題.7、C【解析】∵,,∴面,面,∴,A正確;∵平面即為平面,平面即為平面,且平面,∴平面平面,∴平面平面,∴B正確;當(dāng)時(shí),為鈍角,∴C錯(cuò);將面與面沿展成平面圖形,線段即為的最小值,在中,,利用余弦定理解三角形得,即,∴D正確,故選C考點(diǎn):立體幾何中的動(dòng)態(tài)問(wèn)題【思路點(diǎn)睛】立體幾何問(wèn)題的求解策略是通過(guò)降維,轉(zhuǎn)化為平面幾何問(wèn)題,具體方法表現(xiàn)為:
求空間角、距離,歸到三角形中求解;2.對(duì)于球的內(nèi)接外切問(wèn)題,作適當(dāng)?shù)慕孛?,既要能反映出位置關(guān)系,又要反映出數(shù)量關(guān)系;求曲面上兩點(diǎn)之間的最短距離,通過(guò)化曲為直轉(zhuǎn)化為同一平面上兩點(diǎn)間的距離8、B【解析】設(shè)出直線,并與拋物線聯(lián)立,得到,再根據(jù)拋物線的定義建立等式即可求解.【詳解】因?yàn)橹本€l的方程為,即,由消去y,得,設(shè),則,又因?yàn)橄业闹悬c(diǎn)到拋物線的準(zhǔn)線的距離為3,所以,而,所以,故,解得,所以拋物線的方程為故選:B.9、A【解析】分情況討論當(dāng)直線AB的斜率不存在時(shí),可求面積,檢驗(yàn)是否滿足條件,當(dāng)直線AB的斜率存在時(shí),可設(shè)直線AB的方程y=kx,聯(lián)立橢圓方程,可求△ABF2的面積為S=2代入可求k【詳解】由橢圓=1,則焦點(diǎn)分別為F1(-5,0),F(xiàn)2(5,0),不妨取F(5,0)①當(dāng)直線AB的斜率不存在時(shí),直線AB的方程為x=0,此時(shí)AB=4,=AB?5=×5=10,不符合題意;②可設(shè)直線AB的方程y=kx,由,可得(4+9k2)x2=180,∴xA=6,yA=,∴△ABF2的面積為S=2=2××5×=20,∴k=±故選:A10、D【解析】設(shè)、,所以,運(yùn)用點(diǎn)差法,所以直線的斜率為,設(shè)直線方程為,聯(lián)立直線與橢圓的方程,所以;又因?yàn)椋獾?【考點(diǎn)定位】本題考查直線與圓錐曲線的關(guān)系,考查學(xué)生的化歸與轉(zhuǎn)化能力.11、C【解析】建立空間直角坐標(biāo)系,利用點(diǎn)面距公式求得正確答案.【詳解】設(shè)分別是的中點(diǎn),根據(jù)正三棱柱的性質(zhì)可知兩兩垂直,以為原點(diǎn)建立如圖所示空間直角坐標(biāo)系,,,.設(shè)平面的法向量為,則,故可設(shè),所以點(diǎn)到平面的距離為.故選:C12、A【解析】計(jì)算拋物線的準(zhǔn)線,根據(jù)距離結(jié)合拋物線的定義得到答案.【詳解】拋物線的焦點(diǎn)為,準(zhǔn)線方程為,到軸的距離是4,故到準(zhǔn)線的距離是,故點(diǎn)到該拋物線焦點(diǎn)的距離是.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、2022【解析】根據(jù)排列和組合計(jì)數(shù)公式求出,然后利用二項(xiàng)式定理進(jìn)行求解即可【詳解】解:用1,2,3,4,5組成沒(méi)有重復(fù)數(shù)字的五位數(shù)中,滿足個(gè)位小于百位且百位小于萬(wàn)位的五位數(shù)有個(gè),即,當(dāng)時(shí),,則系數(shù)是,故答案為:202214、7【解析】畫(huà)出約束條件所表示的平面區(qū)域,結(jié)合圖象和直線在軸上的截距,確定目標(biāo)函數(shù)的最優(yōu)解,代入即可求解.【詳解】畫(huà)出不等式組所表示的平面區(qū)域,如圖所示,目標(biāo)函數(shù)可化為,當(dāng)直線過(guò)點(diǎn)點(diǎn)時(shí),此時(shí)直線在軸上的截距最大,此時(shí)目標(biāo)函數(shù)取得最大值,又由,解得,即,所以目標(biāo)函數(shù)的最大值為.故答案為:.15、【解析】根據(jù)題意,作出拋物線的簡(jiǎn)圖,求出拋物線的焦點(diǎn)坐標(biāo)以及準(zhǔn)線方程,分析可得為直角梯形中位線,由拋物線的定義分析可得答案【詳解】如圖,拋物線的焦點(diǎn)為,準(zhǔn)線為,分別過(guò),作準(zhǔn)線的垂線,垂足為,,則有過(guò)的中點(diǎn)作準(zhǔn)線的垂線,垂足為,則為直角梯形中位線,則,即,解得.所以的橫坐標(biāo)為故答案為:16、1458【解析】首先由條件可得第圈的石板為,且為等差數(shù)列,利用基本量求和,即可求解.【詳解】設(shè)第圈的石板為,由條件可知數(shù)列是等差數(shù)列,且上層的第一圈為,且,所以,上層的石板數(shù)為,下層的石板數(shù)為.所以下層比上層多塊石板.故答案為:1458三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2).【解析】(1)根據(jù)導(dǎo)數(shù)的幾何意義得,結(jié)合對(duì)數(shù)的運(yùn)算性質(zhì)求出m,利用直線的點(diǎn)斜式方程即可得出切線方程;(2)由(1)將不等式變形為,利用導(dǎo)數(shù)研究函數(shù)在、、時(shí)的單調(diào)性,即可得出結(jié)果.【小問(wèn)1詳解】,∴,,,,,切線方程為,即,∴.【小問(wèn)2詳解】令,,,當(dāng)時(shí),,所以在上單調(diào)遞增,所以,即符合題意;當(dāng)時(shí),設(shè),①當(dāng),,,所以在上單調(diào)遞增,,所以在上單調(diào)遞增,所以,故符合題意;②當(dāng)時(shí),,,所以在上遞增,在上遞減,且,所以當(dāng)時(shí),,則在上單調(diào)遞減,且,故,,舍去.綜上:18、(1),;(2).【解析】(1)設(shè)等差數(shù)列的公差為,等比數(shù)列的公比為,根據(jù)題意列出表達(dá)式,解出公比和公差,再根據(jù)等差數(shù)等比列的通項(xiàng)公式的求法求出通項(xiàng)即可;(2)根據(jù)第一問(wèn)得到前n項(xiàng)和,數(shù)列,分組求和即可.解析:(1)設(shè)等差數(shù)列的公差為,等比數(shù)列的公比為,∵,,,,∴,∴,,∴,.(2)由(1)知,,∴,∴.19、(1)(2)【解析】(1)由題意,求出的值,然后根據(jù)導(dǎo)數(shù)的幾何意義即可求解;(2)根據(jù)導(dǎo)數(shù)與函數(shù)單調(diào)性關(guān)系,判斷函數(shù)在區(qū)間上的單調(diào)性,從而即可求解.【小問(wèn)1詳解】解:由題意,,因?yàn)?,所以,解得,所以,,因?yàn)?,,所以曲線在點(diǎn)處的切線方程為,即;【小問(wèn)2詳解】解:因?yàn)?,,所以時(shí),,時(shí),,所以在上單調(diào)遞減,在上單調(diào)遞增,所以,即函數(shù)在區(qū)間上的最小值為.20、詳見(jiàn)解析【解析】根據(jù)已知求出的通項(xiàng)公式.當(dāng)①②時(shí),設(shè)數(shù)列公差為,利用賦值法得到與的關(guān)系式,列方程求出與,求出,寫(xiě)出的通項(xiàng)公式,可得數(shù)列的通項(xiàng)公式,利用錯(cuò)位相減法求和即可;選②③時(shí),設(shè)數(shù)列公差為,根據(jù)題意得到與的關(guān)系式,解出與,寫(xiě)出的通項(xiàng)公式,可得數(shù)列的通項(xiàng)公式,利用錯(cuò)位相減法求和即可;選①③時(shí),設(shè)數(shù)列公差為,根據(jù)題意得到與的關(guān)系式,發(fā)現(xiàn)無(wú)解,則等差數(shù)列不存在,故不合題意.【詳解】解:因?yàn)?,,所以是以為首?xiàng),為公比的等比數(shù)列,所以,選①②時(shí),設(shè)數(shù)列公差為,因?yàn)椋裕驗(yàn)?,所以時(shí),,解得,,所以,所以.所以.(i)所以(ii)(i)(ii),得:所以.選②③時(shí),設(shè)數(shù)列公差為,因?yàn)椋?,即,因?yàn)?,,成等比?shù)列,所以,即,化簡(jiǎn)得,因?yàn)?,所以,從而,所以,所以,(i)所以(ii)(i)(ii),得:,所以.選①③時(shí),設(shè)數(shù)列公差為,因?yàn)?,所以時(shí),,所以.又因?yàn)?,,成等比?shù)列,所以,即,化簡(jiǎn)得,因?yàn)椋?,從而無(wú)解,所以等差數(shù)列不存在,故不合題意.【點(diǎn)睛】本題考查了等差(比)數(shù)列的通項(xiàng)公式,考查了錯(cuò)位相減法在數(shù)列求和中的應(yīng)用,考查了轉(zhuǎn)化能力與方程思想,屬于中檔題.21、(1)A不是有界集合,B是有界集合,理由見(jiàn)解析(2)【解析】(1)解不等式求得集合A;由,根據(jù)指數(shù)函數(shù)的性質(zhì)求得集合B,由此可得結(jié)論;(2)由函數(shù),得出函數(shù)單調(diào)遞減,即有,分和兩種情況討論,求得集合的上界,再由集合的上界函數(shù)的單調(diào)性可求得集合的上界的最小值.【小問(wèn)1詳解】解:由得,即,,對(duì)任意一個(gè),都有一個(gè),故不是有界集合;,,,,是有界集合,上界為1;【小問(wèn)2詳解】解:,因?yàn)?,所以函?shù)單調(diào)遞減,,因?yàn)楹瘮?shù)為有界集合,所以分兩種情況討論:當(dāng),即時(shí),集合的上界,當(dāng)時(shí),不等式為;當(dāng)時(shí),不等式為;當(dāng)時(shí),不等式為,即時(shí),集合的上界,當(dāng),即時(shí),集合的上界,同上解不等式得的解為,即時(shí),集合的上界,綜上得時(shí),集合的上界;時(shí),集合的上界.時(shí),集合的上界是一個(gè)減函數(shù),所以此時(shí),時(shí),集合的上界是增函數(shù),所以,所以集合的上界最小值為;22、(1)單調(diào)遞增區(qū)間是(4,+∞),單調(diào)遞減區(qū)間是(0,4);(2)證明見(jiàn)解析.【解析】(1)求的導(dǎo)函數(shù),結(jié)合定義域及導(dǎo)數(shù)的符號(hào)確定單調(diào)區(qū)間;(2)法一:討論、時(shí)的零點(diǎn)情況,即可得,構(gòu)造,利用導(dǎo)數(shù)研究在(0,2a)恒成立,結(jié)合單調(diào)性證明不等式;法二:設(shè),由零點(diǎn)可得,進(jìn)而應(yīng)用分析法將結(jié)論轉(zhuǎn)化為證明,綜合換元法、導(dǎo)數(shù)證明結(jié)論即可.【小問(wèn)1詳解】函數(shù)的定義域?yàn)?0,+∞),當(dāng)a=2時(shí),,則令得,x>4;令得,0<x<4;所以,單調(diào)遞增區(qū)間是(4,+∞);單調(diào)遞減區(qū)間是(0,4).【小問(wèn)2詳解】法一:當(dāng)a≤0時(shí),>0在(0,+∞)上恒成立,故函數(shù)不可能有兩個(gè)不相等的零點(diǎn),當(dāng)a>0時(shí),函數(shù)在(2a,+∞)上單調(diào)遞增
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 浙江師范大學(xué)行知學(xué)院《筆譯實(shí)務(wù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 鄭州鐵路職業(yè)技術(shù)學(xué)院《抽樣技術(shù)與應(yīng)用(實(shí)驗(yàn))》2023-2024學(xué)年第一學(xué)期期末試卷
- 長(zhǎng)春信息技術(shù)職業(yè)學(xué)院《憲法學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 玉林師范學(xué)院《MATLAB語(yǔ)言及應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷
- IT行業(yè)職業(yè)規(guī)劃展望模板
- 秋分?jǐn)?shù)字營(yíng)銷模板
- 二零二五年度高空作業(yè)安全防護(hù)及責(zé)任劃分合同3篇
- 四川省瀘州市合江縣馬街中學(xué)校2024-2025學(xué)年八年級(jí)上學(xué)期1月期末考試生物試卷(含答案)
- 2025版礦山開(kāi)采地質(zhì)勘察技術(shù)服務(wù)合同3篇
- 二零二五年度裝配式建筑班組構(gòu)件運(yùn)輸及安裝合同3篇
- 深圳2024-2025學(xué)年度四年級(jí)第一學(xué)期期末數(shù)學(xué)試題
- 中考語(yǔ)文復(fù)習(xí)說(shuō)話要得體
- 《工商業(yè)儲(chǔ)能柜技術(shù)規(guī)范》
- 華中師范大學(xué)教育技術(shù)學(xué)碩士研究生培養(yǎng)方案
- 風(fēng)浪流耦合作用下錨泊式海上試驗(yàn)平臺(tái)的水動(dòng)力特性試驗(yàn)
- 高考英語(yǔ)語(yǔ)法專練定語(yǔ)從句含答案
- 有機(jī)農(nóng)業(yè)種植技術(shù)操作手冊(cè)
- 【教案】Unit+5+Fun+Clubs+大單元整體教學(xué)設(shè)計(jì)人教版(2024)七年級(jí)英語(yǔ)上冊(cè)
- 2024-2025學(xué)年四年級(jí)上冊(cè)數(shù)學(xué)人教版期末測(cè)評(píng)卷(含答案)
- 《霧化吸入療法合理用藥專家共識(shí)(2024版)》解讀
- 2024年招標(biāo)代理保密協(xié)議
評(píng)論
0/150
提交評(píng)論