版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
江西省豐城市東煌外語實驗學(xué)校2025屆高二數(shù)學(xué)第一學(xué)期期末經(jīng)典試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線C1的一條漸近線方程為y=kx,離心率為e1,雙曲線C2的一條漸近線方程為y=x,離心率為e2,且雙曲線C1、C2在第一象限交于點(1,1),則=()A.|k| B.C.1 D.22.若方程表示焦點在y軸上的雙曲線,則實數(shù)m的取值范圍為()A. B.C. D.且3.如果在一實驗中,測得的四組數(shù)值分別是,則y與x之間的回歸直線方程是()A. B.C. D.4.設(shè)m,n是兩條不同直線,,是兩個不同平面,則下列說法錯誤的是()A.若,,則; B.若,,則;C.若,,則; D.若,,則5.曲線在點處的切線方程是A. B.C. D.6.從裝有2個紅球和2個白球的口袋內(nèi)任取兩個球,則下列選項中的兩個事件為互斥事件的是()A.至多有1個白球;都是紅球 B.至少有1個白球;至少有1個紅球C.恰好有1個白球;都是紅球 D.至多有1個白球;至多有1個紅球7.在平面直角坐標系中,已知點,,,,直線AP,BP相交于點P,且它們斜率之積是.當時,的最小值為()A. B.C. D.8.已知,,,若、、三個向量共面,則實數(shù)A3 B.5C.7 D.99.若隨機事件滿足,,,則事件與的關(guān)系是()A.互斥 B.相互獨立C.互為對立 D.互斥且獨立10.設(shè)函數(shù)是奇函數(shù)的導(dǎo)函數(shù),且,當時,,則不等式的解集為()A. B.C. D.11.某次射擊比賽中,某選手射擊一次擊中10環(huán)的概率是,連續(xù)兩次均擊中10環(huán)的概率是,已知某次擊中10環(huán),則隨后一次擊中10環(huán)的概率是A. B.C. D.12.曲線上存在兩點A,B到直線到距離等于到的距離,則()A.12 B.13C.14 D.15二、填空題:本題共4小題,每小題5分,共20分。13.已知等差數(shù)列公差不為0,且,,等比數(shù)列,則_________.14.如圖,在長方體ABCD—A1B1C1D1,AB=BC=2,CC1=1,則直線AD1與B1D所成角的余弦值為__.15.若復(fù)數(shù)滿足,則_____16.已知圓,直線與圓C交于A,B兩點,且,則______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知圓C:,直線l:.(1)當a為何值時,直線l與圓C相切;(2)當直線l與圓C相交于A,B兩點,且時,求直線l的方程.18.(12分)已知等差數(shù)列中,,前5項的和為,數(shù)列滿足,(1)求數(shù)列,的通項公式;(2)記,求數(shù)列的前n項和19.(12分)在中,角A,B,C的對邊分別是a,b,c,且.(1)求角B的大??;(2)若,,且,求a.20.(12分)等比數(shù)列的各項均為正數(shù),且,.(1)求數(shù)列的通項公式;(2)設(shè),求數(shù)列前項和.21.(12分)已知直線與雙曲線相交于、兩點.(1)當時,求;(2)是否存在實數(shù),使以為直徑的圓經(jīng)過坐標原點?若存在,求出的值;若不存在,說明理由.22.(10分)已知命題:“曲線表示焦點在軸上的橢圓”,命題:“曲線表示雙曲線”.(1)若是真命題,求實數(shù)的取值范圍;(2)若是的必要不充分條件,求實數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據(jù)漸近線方程設(shè)出雙曲線方程,再由過點,可知雙曲線方程,從而可求離心率.【詳解】由題,設(shè)雙曲線的方程為,又因為其過,且可知,不妨設(shè),代入,得,所以雙曲線的方程為,所以,同理可得雙曲線的方程為,所以可得,所以,當時,結(jié)論依然成立.故選:C2、A【解析】根據(jù)雙曲線定義,且焦點在y軸上,則可直接列出相關(guān)不等式.【詳解】若方程表示焦點在y軸上的雙曲線,則必有:,且解得:故選:3、B【解析】根據(jù)已知數(shù)據(jù)求樣本中心點,由樣本中心點在回歸直線上,將其代入各選項的回歸方程驗證即可.【詳解】由題設(shè),,因為回歸直線方程過樣本點中心,A:,排除;B:,滿足;C:,排除;D:,排除.故選:B4、C【解析】直接由直線平面的定理得到選項正確;對于選項,m,n可能平行、相交或異面,所以該選項錯誤;對于選項,與內(nèi)一直線l,所以,因為l為內(nèi)一直線,所以.所以該選項正確.【詳解】對于選項,若,,則,所以該選項正確;對于選項,若,,則,所以該選項正確;對于選項,若,,則m,n可能平行、相交或異面,所以該選項錯誤;對于選項,若,,則與內(nèi)一直線l,所以,因為l為內(nèi)一直線,所以.所以該選項正確.故選:C【點睛】本題主要考查空間直線平面位置關(guān)系判斷,意在考查學(xué)生對這些知識的理解掌握水平.5、D【解析】先求導(dǎo)數(shù),得切線的斜率,再根據(jù)點斜式得切線方程.【詳解】,選D.點睛】本題考查導(dǎo)數(shù)幾何意義以及直線點斜式方程,考查基本求解能力,屬基礎(chǔ)題.6、C【解析】根據(jù)試驗過程進行分析,利用互斥事件的定義對四個選項一一判斷即可.【詳解】對于A:“至多有1個白球”包含都是紅球和一紅一白,“都是紅球”包含都是紅球,所以“至多有1個白球”與“都是紅球”不是互斥事件.故A錯誤;對于B:“至少有1個白球”包含都是白球和一紅一白,“至少有1個紅球”包含都是紅球和一紅一白,所以“至少有1個白球”與“至少有1個紅球”不是互斥事件.故B錯誤;對于C:“恰好有1個白球”包含一紅一白,“都是紅球”包含都是紅球,所以“恰好有1個白球”與“都是紅球”是互斥事件.故C錯誤;對于D:“至多有1個紅球”包含都是白球和一紅一白,“至多有1個白球”包含都是紅球和一紅一白,所以“至多有1個白球”與“至多有1個紅球”不是互斥事件.故D錯誤.故選:C7、A【解析】設(shè)出點坐標,求得、所在直線的斜率,由斜率之積是列式整理即可得到點的軌跡方程,設(shè),根據(jù)雙曲線的定義,從而求出的最小值;【詳解】解:設(shè)點坐標為,則直線的斜率;直線的斜率由已知有,化簡得點的軌跡方程為又,所以點的軌跡方程為,即點的軌跡為以、為頂點的雙曲線的左支(除點),因為,設(shè),由雙曲線的定義可知,所以,當且僅當、、三點共線時取得最小值,因為,所以,所以,即的最小值為;故選:A8、A【解析】由空間向量共面原理得存在實數(shù),,使得,由此能求出實數(shù)【詳解】解:,,,、、三個向量共面,存在實數(shù),,使得,即有:,解得,,實數(shù)故選:【點睛】本題考查空間向量共面原理的應(yīng)用,屬于基礎(chǔ)題9、B【解析】利用獨立事件,互斥事件和對立事件的定義判斷即可【詳解】解:因為,,又因為,所以有,所以事件與相互獨立,不互斥也不對立故選:B.10、D【解析】設(shè),則,分析可得為偶函數(shù)且,求出的導(dǎo)數(shù),分析可得在上為減函數(shù),進而分析可得上,,在上,,結(jié)合函數(shù)的奇偶性可得上,,在上,,又由即,則有或,據(jù)此分析可得答案【詳解】根據(jù)題意,設(shè),則,若奇函數(shù),則,則有,即函數(shù)為偶函數(shù),又由,則,則,,又由當時,,則在上為減函數(shù),又由,則在上,,在上,,又由為偶函數(shù),則在上,,在上,,即,則有或,故或,即不等式的解集為;故選:D11、B【解析】根據(jù)條件概率的計算公式,得所求概率為,故選B.12、D【解析】由題可知A,B為半圓C與拋物線的交點,利用韋達定理及拋物線的定義即求.【詳解】由曲線,可得,即,為圓心為,半徑為7半圓,又直線為拋物線的準線,點為拋物線的焦點,依題意可知A,B為半圓C與拋物線的交點,由,得,設(shè),則,,∴.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設(shè)等差數(shù)列的公差為,由,,等比數(shù)列,可得,則的值可求【詳解】解:設(shè)等差數(shù)列的公差為,,,等比數(shù)列,,則,得,故答案為:14、【解析】以為原點,所在直線為軸的正方向建立空間直角坐標系,求出,的坐標,由向量夾角公式可得答案.【詳解】以為原點,所在直線為軸的正方向建立如圖的坐標系,∵AB=BC=2,CC1=1,∴,,,,則,,則,,則cos<,>==,即AD1與B1D所成角的余弦值為,故答案為:.15、【解析】設(shè),則,利用復(fù)數(shù)相等,求出,的值,結(jié)合復(fù)數(shù)的模長公式進行計算即可【詳解】設(shè),則,則由得,即,則,得,則,故答案為【點睛】本題主要考查復(fù)數(shù)模長的計算,利用待定系數(shù)法,結(jié)合復(fù)數(shù)相等求出復(fù)數(shù)是解決本題的關(guān)鍵16、-2【解析】將圓的一般方程化為標準方程,結(jié)合垂徑定理和勾股定理表示出圓心到弦的距離,再由點到直線的距離公式表示出圓心到弦的距離,解方程即可求得的值.【詳解】解:將圓的方程化為標準方程可得,圓心為,半徑圓C與直線相交于、兩點,且,由垂徑定理和勾股定理得圓心到直線的距離為,由點到直線距離公式得,所以,解得,故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)或.【解析】(1)根據(jù)圓心到直線的距離d等于圓的半徑r即可求得答案;(2)由并結(jié)合(1)即可求得答案.【小問1詳解】由圓:,可得,其圓心為,半徑,若直線與圓相切,則圓心到直線:距離,即,可得:.【小問2詳解】由(1)知圓心到直線的距離,因為,即,解得:,所以,整理可得:,解得:或,則直線的方程為或.18、(1),;(2).【解析】(1)利用等差數(shù)列求和公式可得,進而可得,再利用累加法可求,即得;(2)由題可得,然后利用分組求和法即得.【小問1詳解】設(shè)公差為d,由題設(shè)可得,解得,所以;當時,,∴,當時,(滿足上述的),所以【小問2詳解】∵當時,當時,綜上所述:19、(1);(2).【解析】(1)根據(jù)已知條件,運用余弦定理化簡可求出;(2)由可求出,利用誘導(dǎo)公式和兩角和的正弦公式求出,再利用正弦定理即求.【小問1詳解】)∵且,∴,∴,∴,∵,∴.【小問2詳解】∵,∴,∴,∵,∴,∵,∴,又∵,,,∴.20、(1);(2).【解析】(1)根據(jù)題意求出首項和公比即可得出通項公式;(2)可得是等差數(shù)列,利用等差數(shù)列前n項和公式即可求出.【詳解】解:(1)設(shè)等比數(shù)列的公比為,則,由題意得,解得,因此,;(2),則,所以,數(shù)列是等差數(shù)列,首項,記數(shù)列前項和為,則.21、(1);(2)不存在,理由見解析.【解析】(1)當時,將直線的方程與雙曲線的方程聯(lián)立,列出韋達定理,利用弦長公式可求得;(2)假設(shè)存在實數(shù),使以為直徑的圓經(jīng)過坐標原點,設(shè)、,將直線與雙曲線的方程聯(lián)立,列出韋達定理,由已知可得出,利用平面向量數(shù)量積的坐標運算結(jié)合韋達定理可得出,即可得出結(jié)論.【小問1詳解】解:設(shè)點、,當時,聯(lián)立,可得,,由韋達定理可得,,所以,.【小問2詳解】解:假設(shè)存在實數(shù),使以為直徑的圓經(jīng)過坐標原點,設(shè)、,聯(lián)立得,由題意可得,解得且,由韋達定理可知,因為以為直徑的圓經(jīng)過坐標原點
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 招標代理公司掛靠合同范例
- 冰箱合同范例
- 砂漿銷售運輸合同范例
- 商業(yè)地產(chǎn)投資租賃合同范例
- 橙子 收購合同范例
- 個人詐騙罪合同范例
- 四方協(xié)議合同范例
- 股票英文合同范例
- 合同范例簽訂
- 出口銷售合同范例中文
- 鄧州市龍理鄉(xiāng)第一初級中學(xué)-2025年春節(jié)寒假跨學(xué)科主題實踐作業(yè)模板【課件】
- 酒店宴會服務(wù)合同三篇
- 云南省2024年7月高中學(xué)業(yè)水平合格性考試生物試卷
- 中國傳統(tǒng)文化(西安交通大學(xué))知到智慧樹章節(jié)測試課后答案2024年秋西安交通大學(xué)
- 《督查工作》課件
- 2024年社區(qū)工作者考試必考1000題【歷年真題】
- 公司安全事故隱患內(nèi)部舉報、報告獎勵制度
- 冬季傳染病預(yù)防-(課件)-小學(xué)主題班會課件
- 會計學(xué)原理智慧樹知到期末考試答案章節(jié)答案2024年西北農(nóng)林科技大學(xué)
- 新時代大學(xué)生勞動教育智慧樹知到期末考試答案章節(jié)答案2024年江西中醫(yī)藥大學(xué)
- 中國玉石及玉文化鑒賞智慧樹知到期末考試答案章節(jié)答案2024年同濟大學(xué)
評論
0/150
提交評論