江蘇省鹽城市濱??h2025屆高二上數(shù)學(xué)期末學(xué)業(yè)水平測(cè)試模擬試題含解析_第1頁(yè)
江蘇省鹽城市濱??h2025屆高二上數(shù)學(xué)期末學(xué)業(yè)水平測(cè)試模擬試題含解析_第2頁(yè)
江蘇省鹽城市濱??h2025屆高二上數(shù)學(xué)期末學(xué)業(yè)水平測(cè)試模擬試題含解析_第3頁(yè)
江蘇省鹽城市濱海縣2025屆高二上數(shù)學(xué)期末學(xué)業(yè)水平測(cè)試模擬試題含解析_第4頁(yè)
江蘇省鹽城市濱??h2025屆高二上數(shù)學(xué)期末學(xué)業(yè)水平測(cè)試模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩10頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

江蘇省鹽城市濱海縣2025屆高二上數(shù)學(xué)期末學(xué)業(yè)水平測(cè)試模擬試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知數(shù)列滿足,則()A. B.1C.2 D.42.設(shè)x∈R,則x<3是0<x<3的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分又不必要條件3.已知橢圓的離心率,為橢圓上的一個(gè)動(dòng)點(diǎn),若定點(diǎn),則的最大值為A. B.C. D.4.已知函數(shù),則()A.函數(shù)在上單調(diào)遞增B.函數(shù)上有兩個(gè)零點(diǎn)C.函數(shù)有極大值16D.函數(shù)有最小值5.經(jīng)過(guò)點(diǎn)作圓的弦,使點(diǎn)為弦的中點(diǎn),則弦所在直線的方程為A. B.C. D.6.設(shè)、分別為具有公共焦點(diǎn)與的橢圓和雙曲線的離心率,為兩曲線的一個(gè)公共點(diǎn),且滿足,則的值為()A. B.C. D.7.阿波羅尼斯約公元前年證明過(guò)這樣一個(gè)命題:平面內(nèi)到兩定點(diǎn)距離之比為常數(shù)且的點(diǎn)的軌跡是圓.后人將這個(gè)圓稱(chēng)為阿氏圓.若平面內(nèi)兩定點(diǎn)A,B間的距離為2,動(dòng)點(diǎn)P與A,B距離之比滿足:,當(dāng)P、A、B三點(diǎn)不共線時(shí),面積的最大值是()A. B.2C. D.8.設(shè)雙曲線的左、右頂點(diǎn)分別為、,左、右焦點(diǎn)分別為、,以為直徑的圓與雙曲線左支的一個(gè)交點(diǎn)為若以為直徑的圓與直線相切,則的面積為()A. B.C. D.9.已知數(shù)列的首項(xiàng)為,且,若,則的取值范圍是()A. B.C. D.10.展開(kāi)式的第項(xiàng)為()A. B.C. D.11.我國(guó)古代數(shù)學(xué)名著《算法統(tǒng)宗》中說(shuō):“九百九十六斤棉,贈(zèng)分八子做盤(pán)纏,次第每人多十七,要將第八數(shù)來(lái)言,務(wù)要分明依次第,孝和休惹外人傳.”意為:“996斤棉花,分別贈(zèng)送給8個(gè)子女做旅費(fèi),從第一個(gè)孩子開(kāi)始,以后每人依次多17斤,直到第8個(gè)孩子為止.分配時(shí)一定要依照次序分,要順從父母,兄弟間和氣,不要引得外人說(shuō)閑話.”在這個(gè)問(wèn)題中,第5個(gè)孩子分到棉花為()A.133斤 B.116斤C.99斤 D.65斤12.二項(xiàng)式的展開(kāi)式中,各項(xiàng)二項(xiàng)式系數(shù)的和是()A.2 B.8C.16 D.32二、填空題:本題共4小題,每小題5分,共20分。13.已知AB為圓O:的直徑,點(diǎn)P為橢圓上一動(dòng)點(diǎn),則的最小值為_(kāi)_____14.圓與圓的位置關(guān)系為_(kāi)_____(填相交,相切或相離).15.如圖,在正四棱錐中,為棱PB的中點(diǎn),為棱PD的中點(diǎn),則棱錐與棱錐的體積之比為_(kāi)_____16.一個(gè)六棱錐的體積為,其底面是邊長(zhǎng)為的正六邊形,側(cè)棱長(zhǎng)都相等,則該六棱錐的側(cè)面積為.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知數(shù)列,,其中,是各項(xiàng)均為正數(shù)的等比數(shù)列,滿足,,且(1)求數(shù)列,的通項(xiàng)公式;(2)設(shè),求數(shù)列的前n項(xiàng)和18.(12分)已知函數(shù)(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;(2)設(shè),,求證:;(3)當(dāng)時(shí),恒成立,求的取值范圍19.(12分)已知定點(diǎn),動(dòng)點(diǎn)滿足,設(shè)點(diǎn)的軌跡為.(1)求軌跡的方程;(2)若點(diǎn)分別是圓和軌跡上的點(diǎn),求兩點(diǎn)間的最大距離.20.(12分)記為數(shù)列的前項(xiàng)和,且(1)求的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和21.(12分)蒙古包是蒙古族牧民居住的一種房子,建造和搬遷都很方便,適于游牧生活.其結(jié)構(gòu)如圖所示,上部分是側(cè)棱長(zhǎng)為3的正六棱錐,下部分是高為1的正六棱柱,分別為正六棱柱上底面與下底面的中心.(1)若長(zhǎng)為,把蒙古包的體積表示為的函數(shù);(2)求蒙古包體積的最大值.22.(10分)已知,直線過(guò)且與交于兩點(diǎn),過(guò)點(diǎn)作直線的平行線交于點(diǎn)(1)求證:為定值,并求點(diǎn)的軌跡的方程;(2)設(shè)動(dòng)直線與相切于點(diǎn),且與直線交于點(diǎn),在軸上是否存在定點(diǎn),使得以為直徑的圓恒過(guò)定點(diǎn)?若存在,求出的坐標(biāo);若不存在,說(shuō)明理由

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】根據(jù)遞推式以及迭代即可.【詳解】由,得,,,,,,.故選:B2、B【解析】利用充分條件、必要條件的定義可得出結(jié)論.【詳解】,因此,“”是“”必要不充分條件.故選:B.3、C【解析】首先求得橢圓方程,然后確定的最大值即可.【詳解】由題意可得:,據(jù)此可得:,橢圓方程為,設(shè)橢圓上點(diǎn)的坐標(biāo)為,則,故:,當(dāng)時(shí),.本題選擇C選項(xiàng).【點(diǎn)睛】本題主要考查橢圓方程問(wèn)題,橢圓中的最值問(wèn)題等知識(shí),意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算求解能力.4、C【解析】對(duì)求導(dǎo),研究的單調(diào)性以及極值,再結(jié)合選項(xiàng)即可得到答案.【詳解】,由,得或,由,得,所以在上遞增,在上遞減,在上遞增,所以極大值為,極小值為,所以有3個(gè)零點(diǎn),且無(wú)最小值.故選:C5、A【解析】由題知為弦AB的中點(diǎn),可得直線與過(guò)圓心和點(diǎn)的直線垂直,可求的斜率,然后用點(diǎn)斜式求出的方程【詳解】由題意知圓的圓心為,,由,得,∴弦所在直線的方程為,整理得.選A.【點(diǎn)睛】本題考查直線與圓的位置關(guān)系,直線的斜率,直線的點(diǎn)斜式方程,屬于基礎(chǔ)題6、A【解析】設(shè)橢圓的長(zhǎng)半軸長(zhǎng)為,雙曲線的實(shí)半軸長(zhǎng)為,不妨設(shè),利用橢圓和雙曲線的定義可得出,再利用勾股定理可求得結(jié)果.【詳解】設(shè)橢圓的長(zhǎng)半軸長(zhǎng)為,雙曲線的實(shí)半軸長(zhǎng)為,不妨設(shè),由橢圓和雙曲線的定義可得,所以,,設(shè),因?yàn)?,則,由勾股定理得,即,整理得,故.故選:A.7、C【解析】根據(jù)給定條件建立平面直角坐標(biāo)系,求出點(diǎn)P的軌跡方程,探求點(diǎn)P與直線AB的最大距離即可計(jì)算作答.【詳解】依題意,以線段AB的中點(diǎn)為原點(diǎn),直線AB為x軸建立平面直角坐標(biāo)系,如圖,則,,設(shè),因,則,化簡(jiǎn)整理得:,因此,點(diǎn)P的軌跡是以點(diǎn)為圓心,為半徑的圓,點(diǎn)P不在x軸上時(shí),與點(diǎn)A,B可構(gòu)成三角形,當(dāng)點(diǎn)P到直線(軸)的距離最大時(shí),的面積最大,顯然,點(diǎn)P到軸的最大距離為,此時(shí),,所以面積的最大值是故選:C8、C【解析】據(jù)三角形中位線可得;再由雙曲線的定義求出,進(jìn)而求出的面積【詳解】雙曲線的方程為:,,設(shè)以為直徑的圓與直線相切與點(diǎn),則,且,,∥.又為的中點(diǎn),,又,,的面積為:.故選:C9、C【解析】由題意,得到,利用疊加法求得,結(jié)合由,轉(zhuǎn)化為恒成立,分,和三種情況討論,即可求解.【詳解】因?yàn)?,可得,所以,所以,各式相加可得,所以,由,可得恒成立,整理得恒成立,?dāng)時(shí),,不等式可化為恒成立,所以;當(dāng)時(shí),,不等式可化為恒成立;當(dāng)時(shí),,不等式可化為恒成立,所以,綜上可得,實(shí)數(shù)的取值范圍是.故選:C.10、B【解析】由展開(kāi)式的通項(xiàng)公式求解即可【詳解】因?yàn)?,所以展開(kāi)式的第項(xiàng)為,故選:B11、A【解析】根據(jù)等差數(shù)列的前n項(xiàng)和公式、等差數(shù)列的通項(xiàng)公式進(jìn)行求解即可.【詳解】依題意得,八個(gè)子女所得棉花斤數(shù)依次構(gòu)成等差數(shù)列,設(shè)該等差數(shù)列為,公差為d,前n項(xiàng)和為,第一個(gè)孩子所得棉花斤數(shù)為,則由題意得,,解得,故選:A12、D【解析】根據(jù)給定條件利用二項(xiàng)式系數(shù)的性質(zhì)直接計(jì)算作答.【詳解】二項(xiàng)式的展開(kāi)式的各項(xiàng)二項(xiàng)式系數(shù)的和是.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】方法一:通過(guò)對(duì)稱(chēng)性取特殊位置,設(shè)出P的坐標(biāo),利用向量的數(shù)量積轉(zhuǎn)化求解最小值即可方法二:利用向量的數(shù)量積,轉(zhuǎn)化為向量的和與差的平方,通過(guò)圓的特殊性,轉(zhuǎn)化求解即可【詳解】解:方法一:依據(jù)對(duì)稱(chēng)性,不妨設(shè)直徑AB在x軸上,x,,,從而故答案為2方法二:,而,則答案2故答案為2【點(diǎn)睛】本題考查直線與圓的位置關(guān)系、橢圓方程的幾何性質(zhì)考查轉(zhuǎn)化思想以及計(jì)算能力14、相交【解析】求兩圓圓心距,并與半徑之和、半徑之差的絕對(duì)值比較即可.【詳解】圓的圓心為,半徑為,圓的圓心為,半徑為,∵,∴兩圓相交.故答案為:相交.15、【解析】根據(jù)圖形可求出與棱錐的體積之比,即可求出結(jié)果【詳解】如圖所示:棱錐可看成正四棱錐減去四個(gè)小棱錐的體積得到,設(shè)正四棱錐的體積為,為PB的中點(diǎn),為PD的中點(diǎn),所以,而,同理,故棱錐的體積的為,即棱錐與棱錐的體積之比為故答案為:.16、【解析】判斷棱錐是正六棱錐,利用體積求出棱錐的高,然后求出斜高,即可求解側(cè)面積∵一個(gè)六棱錐的體積為,其底面是邊長(zhǎng)為2的正六邊形,側(cè)棱長(zhǎng)都相等,∴棱錐是正六棱錐,設(shè)棱錐的高為h,則棱錐斜高為該六棱錐的側(cè)面積為考點(diǎn):棱柱、棱錐、棱臺(tái)的體積三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1),(2)【解析】(1)利用公式法,基本量代換求出數(shù)列,的通項(xiàng)公式;(2)利用錯(cuò)位相減法求和.【小問(wèn)1詳解】設(shè)等比數(shù)列的公比為q,因?yàn)?,所以,所以.所以,所以,所以.所以,所以,【小?wèn)2詳解】,所以,,所以.所以18、(1)函數(shù)單調(diào)遞增區(qū)間為(0,1),單調(diào)遞減區(qū)間為(1,+∞)(2)證明見(jiàn)解析(3)[1,+∞)【解析】(1)對(duì)函數(shù)求導(dǎo)后,由導(dǎo)數(shù)的正負(fù)可求出函數(shù)的單調(diào)區(qū)間,(2)由(1)可得,令,則可得,然后利用累加法可證得結(jié)論,(3)由,故,然后分和討論的最大值與比較可得結(jié)果【小問(wèn)1詳解】當(dāng)時(shí),(),則,由,解得;由,解得,因此函數(shù)單調(diào)遞增區(qū)間為(0,1),單調(diào)遞減區(qū)間為(1,+∞)【小問(wèn)2詳解】由(1)知,當(dāng)k=1時(shí),,故令,則,即,所以【小問(wèn)3詳解】由,故當(dāng)時(shí),因?yàn)?,所以,因此恒成立,且的根至多一個(gè),故在(0,1]上單調(diào)遞增,所以恒成立當(dāng)時(shí),令,解得當(dāng)時(shí),,則單調(diào)遞增;當(dāng)時(shí),,則單調(diào)遞減;于是,與恒成立相矛盾綜上,的取值范圍為[1,+∞)【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:此題考查導(dǎo)數(shù)的綜合應(yīng)用,考查利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū),利用導(dǎo)數(shù)求函數(shù)的最值,利用導(dǎo)數(shù)證明不等式,第(2)問(wèn)解題的關(guān)鍵是利用(1)可得,從而得,然后令,得,最后累加可證得結(jié)論,考查數(shù)轉(zhuǎn)化思想,屬于較難題19、(1)(2)【解析】(1)設(shè)動(dòng)點(diǎn),根據(jù)條件列出方程,化簡(jiǎn)求解即可;(2)設(shè),求出圓心到軌跡上點(diǎn)的距離,配方求最值即可得解.【小問(wèn)1詳解】設(shè)動(dòng)點(diǎn),則,,,又,∴,化簡(jiǎn)得,即,∴動(dòng)點(diǎn)的軌跡E的方程為.【小問(wèn)2詳解】設(shè),圓心到軌跡E上的點(diǎn)的距離∴當(dāng)時(shí),,∴.20、(1)(2)【解析】(1)利用,再結(jié)合等比數(shù)列的概念,即可求出結(jié)果;(2)由(1)可知數(shù)列是以為首項(xiàng),公差為的等差數(shù)列,根據(jù)等差數(shù)列的前項(xiàng)和公式,即可求出結(jié)果.【小問(wèn)1詳解】解:當(dāng)時(shí),,解得;當(dāng)且時(shí),所以所以是以為首項(xiàng),為公比的等比數(shù)列所以;【小問(wèn)2詳解】解:由(1)可知,所以,又,所以數(shù)列是以為首項(xiàng),公差為的等差數(shù)列,所以數(shù)列的前項(xiàng)和.21、(1),其中.(2).【解析】(1)利用柱體和椎體體積公式求得的函數(shù)表達(dá)式.(2)利用導(dǎo)數(shù)求得體積的最大值.【小問(wèn)1詳解】正六邊形的邊長(zhǎng)(0),底面積,于是,其中.【小問(wèn)2詳解】,,當(dāng)時(shí),單調(diào)遞增,當(dāng)時(shí),單調(diào)遞減,所以當(dāng)時(shí),.綜上,當(dāng)時(shí),蒙古包體積最大,且最大體積為.22、(1)證明見(jiàn)解

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論